Journal of Fusion Energy

, Volume 33, Issue 1, pp 32–39 | Cite as

Optimization of Fusion Pellet Launch Velocity in an Electrothermal Mass Accelerator

  • T. E. Gebhart
  • R. T. Holladay
  • M. J. Esmond
  • A. L. Winfrey
Original Research


Electrothermal mass accelerators, based on capillary discharges, that form a plasma propelling force from the ablation of a low-z liner material are candidates for fuelling magnetic fusion reactors. As lithium is considered a fusion fuel and not an impurity, lithium hydride and lithium deuteride can serve as good ablating liners for plasma formation in an electrothermal plasma source to propel fusion pellets. A comprehensive study of solid lithium hydride and deuteride as liner materials to generate a plasma to propel cryogenic fuel pellets is presented here. This study was conducted using the ETFLOW capillary discharge code. Relationships between propellants, source and barrel geometry, pellet volume and aspect ratio, and pellet velocity are determined for pellets ranging in volume from 5 to 100 mm3.


Fusion fuelling Frozen pellets Pellet aspect ratio Capillary discharges Electrothermal plasmas 



Work supported by the Virginia Tech Nuclear Engineering Program. The authors thank Dr. M.A. Bourham at N.C. State University for his generosity in sharing his time and insight in discussions and comments.


  1. 1.
    D. Babineau, S. Maruyama, R. Pearce, M. Glugla, Li Bo, B. Rogers, S. Willms, G. Piazza, T. Yamanishi, S. H. Yun, L. Worth, W. Shu, Review of the ITER fuel cycle. In Proceedings of 23rd IAEA Fusion Energy Conference, 11–16 October, Daejeon, Republic of Korea, paper ITR2/2 (2010)Google Scholar
  2. 2.
    D. Frigione, L. Garzotti, C.D. Challis, M. De Baar, P. De Vries, M. Brix, X. Garbet, N. Hawkes, A. Thyagaraja, L. Zabeo, JET EFDA contributors, Pellet injection and high density ITB formation in JET advanced tokamak Plasmas. EFDA–JET–PR(06)13. In Proceedings of 20th IAEA Fusion Energy Conference, Vilamoura, Portugal, pp. 1–22 (2004)Google Scholar
  3. 3.
    S.L. Milora, C.A. Foster, Pneumatic hydrogen pellet injection system for the ISX tokamak. Rev. Sci. Instrum. 50(4), 482 (1979)ADSCrossRefGoogle Scholar
  4. 4.
    S.K. Combs, C.R. Foust, S.L. Milora, Small-bore (1.8 mm), high-firing-rate (10 Hz) version of a repeating pneumatic hydrogen pellet injector. Rev. Sci. Instrum. 33, 2736 (1995)ADSCrossRefGoogle Scholar
  5. 5.
    R.W. Kincaid, M.A. Bourham, Plasma gun pellet acceleration modeling and experiment. Fusion Technol. 30, 834 (1996)Google Scholar
  6. 6.
    S.J. Meitner, L.R. Baylor, S.K. Combs, D.T. Fehling, J.M. McGill, D.A. Rasmussen, J.W. Leachman, Development of a twin-screw D2 extruder for the ITER pellet injection system. Fusion Sci. Technol. 56, 52 (2009)Google Scholar
  7. 7.
    A.L. Winfrey, M.A. Abd Al-Halim, J.G. Gilligan, A.V. Saveliev, M.A. Bourham, Modeling of an ablation-free electrothermal plasma pellet accelerator. Fusion Sci. Technol. 60, 480 (2011)Google Scholar
  8. 8.
    A.L. Winfrey, J.G. Gilligan, M.A. Bourham, A computational study of a capillary discharge pellet accelerator concept for magnetic fusion fueling. J. Fusion Energ 32, 227 (2012)ADSCrossRefGoogle Scholar
  9. 9.
    A.L. Winfrey, M.A. Abd Al-Halim, A.V. Saveliev, J.G. Gilligan, M.A. Bourham, Enhanced performance of electrothermal plasma sources as fusion pellet injection drivers and space based mini-thrusters via extension of a flattop discharge current. J. Fusion Energ 32, 371 (2013)ADSCrossRefGoogle Scholar
  10. 10.
    L.R. Baylor, T.C. Jernigan, R.J. Colchin, Characteristics of ELM activity and fueling efficiency of pellet injection from different locations on DIII-D. J. Nuclear Mater 290–293, 398 (2001)CrossRefGoogle Scholar
  11. 11.
    L.R. Baylor, T.C. Jernigan, C. Hsieh, Deposition of fuel pellets injected into tokamak plasmas. Fusion Technol. 34(3), 425 (1998)Google Scholar
  12. 12.
    R. Alimi, L. Bakshi, E. Kot, Experimental ballistic improvement in a pure electrothermal 25-mm gun. IEEE Trans. Magn. 43(1), 284 (2007)ADSCrossRefGoogle Scholar
  13. 13.
    R. Alimi, L. Bakshi, E. Kot, Temperature compensation and improved ballistic performance in a solid-propellant electrothremal-chemical 40-mm gun. IEEE Trans. Magn. 43(1), 289 (2007)ADSCrossRefGoogle Scholar
  14. 14.
    S.Y. Wang, P.J. Staiger, Primary Propulsion of Electrothermal, Ion, and Chemical Systems for Space-Based Radar Orbit Transfer. NASA technical memorandum 87043, NAS 1.15:87043 (1985)Google Scholar
  15. 15.
    T. Edamitsu, H. Tahara, Experimental and numerical study of an electrothermal pulsed plasma thruster for small satellites. Vacuum 80, 1223 (2006)CrossRefGoogle Scholar
  16. 16.
    Y. Takao, K. Eriguchi, K. Ono, A miniature electrothermal thruster using microwave-excited microplasmas: thrust measurement and its comparison with numerical analysis. J. Appl. Phys. 101, 123307 (2007)ADSCrossRefGoogle Scholar
  17. 17.
    F.D. Witherspoon, R.L. Burton, S.A. Goldstein, A second generation EMET railgun for secondary arc studies. IEEE Trans. Magn. 27, 91 (1991)ADSCrossRefGoogle Scholar
  18. 18.
    J. Dyvik, J. Herbig, R. Appleton, J. O’Reilly, J. Shin, Recent activities in electro-thermal chemical launcher technologies at BAE systems. In 13th International Symposium on Electromagnetic Launch Technology (EML), May 22–25, Potsdam, Brandenburg, Germany (2006)Google Scholar
  19. 19.
    C.M. Edwards, M.A. Bourham, J.G. Gilligan, Experimental studies of the plasma-propellant interface for electrothermal-chemical launchers. IEEE Trans. Magn. 31, 404 (1995)Google Scholar
  20. 20.
    J.G. Gilligan, M.A. Bourham, The use of an electrothermal plasma gun to simulate the extremely high heat flux conditions of a tokamak disruption. J. Fusion Energ 12, 311 (1993)ADSCrossRefGoogle Scholar
  21. 21.
    J.P. Sharpe, M.A. Bourham, J.G. Gilligan, Generation and characterization of carbon particulate in disruption simulations. Fusion Technol. 34, 634 (1998)Google Scholar
  22. 22.
    S.K. Combs, M.J. Gouge, L.R. Baylor, Development of pellet injection systems for ITER. In Proceedings of IEEE Symposium of Fusion Energy (1995 SOFE, Sept 30–Oct 5), Champaign, IL, USA, 1607 (1995)Google Scholar
  23. 23.
    B.V. Kuteev, A.P. Umov, I.V. Viniar, Pellet injection research and development program. Plasma Devices Oper. 2, 193 (1994)CrossRefGoogle Scholar
  24. 24.
    M.J. Gouge, K.D. St. Onnge, S.L. Milora, Pellet fueling systems for ITER. Fusion Eng. Des. 19, 53 (1992)CrossRefGoogle Scholar
  25. 25.
    A.L. Winfrey, M.A. Bourham, J.G. Gilligan, A study of plasma parameters in a capillary discharge with calculations using ideal and nonideal plasma models for comparison with experiment. IEEE Trans. Plasma Sci. 40, 843 (2012)ADSCrossRefGoogle Scholar
  26. 26.
    J.D. Hurley, M.A. Bourham, J.G. Gilligan, Numerical simulations and experiment of plasma flow in the electrothermal launcher SIRENS. IEEE Trans. Plasma Sci. 31, 616 (1995)Google Scholar
  27. 27.
    R.W. Kincaid, M.A. Bourham, J. G. Gilligan, acceleration using an ablation-controlled electrothermal launcher. In Proceedings of IEEE Symposium of Fusion Energy (1995 SOFE, Sept 30–Oct 5), Champaign, IL, USA, 1613 (1995)Google Scholar
  28. 28.
    H. Ngo, A Pseudo Two-Dimensional Time-Dependent Model of the Heat and Current Transport Within an Electrothermal Plasma Source. MNE Thesis, North Carolina State University, 1998Google Scholar
  29. 29.
    B. Lamber, Effect of Incorporation of a New Model for Electron-Ion Collision Frequency in an Electrothermal Plasma Launcher. MNE Thesis, North Carolina State University, 2000Google Scholar
  30. 30.
    A.L. Winfrey, A Numerical Study of the Non-ideal Behavior, Parameters, and Novel Applications of an Electrothermal Plasma Source. PhD Dissertation, North Carolina State University, 2010Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • T. E. Gebhart
    • 1
  • R. T. Holladay
    • 1
  • M. J. Esmond
    • 1
  • A. L. Winfrey
    • 1
  1. 1.Nuclear Engineering Program, Department of Mechanical EngineeringVirginia Polytechnic Institute and State UniversityBlacksburgUSA

Personalised recommendations