Skip to main content

Advertisement

Log in

Alpha Production Cross Sections for Some Target Fusion Structural Materials up to 35 MeV

  • Original Research
  • Published:
Journal of Fusion Energy Aims and scope Submit manuscript

Abstract

In the next century, because of the worldwide energy shortage, human life will badly be affected. Nuclear fusion energy is the remarkable solution to the rising energy challenges because it has the great potential for sustainability, economic and reliability. There have been many research and development studies to get energy from fusion. Moreover, the neutron induced reaction cross section data around 14–15 MeV are need to the design and development of nuclear fusion reactors. Thus, the working out the systematics of (n,α) reaction cross sections is very important and necessary for the definition of the excitation curves at around 14–15 MeV energy. In this study, neutron induced reaction cross sections for structural fusion materials such as Sc (Scandium), Co (Cobalt), Ni (Nickel), Cu (Copper), Y (Yttrium), Mo (Molybdenum), Zr (Zirconium) and Nb (Niobium) have been investigated for the (n,α) reactions. The new calculations on the excitation functions of 45 Sc(n,a)42 K, 59 Co (n,a)56 Mn, 62 Ni(n,a)59 Fe, 63 Cu(n,a)60 Co, 65 Cu(n,a)62 Co, 89 Y(n,a)86 Rb, 92 Mo(n,a)89 Zr, 98 Mo(n,a)95 Zr, 92 Zr(n,a)89 Sr, 94 Zr(n,a)91 Sr and 93 Nb(n,a)90 Y reactions have been carried out up to 35 MeV incident neutron energies. In these calculations, the pre-equilibrium and equilibrium effects have been investigated. The pre-equilibrium calculations involve the new evaluated the geometry dependent hybrid model, hybrid model and the cascade exciton model. The equilibrium effects of the excitation functions for the investigated reactions are calculated according to the Weisskopf-Ewing model. Additionaly, in the present work, the (n,α) reaction cross sections have calculated by using evaluated empirical formulas developed by Tel et al. at 14–15 MeV energy. The calculated results have been discussed and compared with the available experimental data taken from EXFOR database.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. E. Tel et al., J. Fusion Energ. 28, 377 (2009)

    Article  Google Scholar 

  2. E.E. Bloom, J. Nucl. Mater. 7, 258 (1998)

    Google Scholar 

  3. E. Tel, J. Fusion Energ. 29, 332 (2010)

    Article  Google Scholar 

  4. S. Şahin, M. Übeyli, J. Fusion Energ. 27, 271 (2008)

    Article  Google Scholar 

  5. E. Tel et al., J. Fusion Energ. 31, 184 (2012)

    Article  Google Scholar 

  6. E. Tel et al., J. Fusion Energ. 29, 290 (2010)

    Article  Google Scholar 

  7. M. Übeyli, E. Tel, J. Fusion Energ. 22, 2 (2003)

    Google Scholar 

  8. E. Tel et al., J. Fusion Energ. 30, 26 (2011)

    Article  Google Scholar 

  9. E. Tel et al., Kerntechnik. 76(2), 136 (2011)

    MathSciNet  Google Scholar 

  10. M. Walt, in Fast neutron physics, part I: techniques, ed. by J.B. Marion, J.L. Fowler (Interscience, New York, 1960), p. 509

    Google Scholar 

  11. S. Şahin et al., Fusion Tech. 10, 84 (1986)

    Google Scholar 

  12. Brookhaven National Laboratory, National Nuclear Data Center, EXFOR/CSISRS (Experimental Nuclear Reaction Data File). Database version of October 12, 2009, (http://www.nndc.bnl.gov/exfor/) (2009)

  13. R.A. Forrest, J. Kopecky, Nucl. Eng. Des. Fusion. 82, 73 (2007)

    Article  Google Scholar 

  14. S.L. Goyal, P. Gur, Pramana 72(2), 355 (2009)

    Article  ADS  Google Scholar 

  15. E. Tel, Ş. Okuducu, A. Aydin, B. Şarer, G. Tanir, Acta. Phys. Slov. 54(2), 191 (2004)

    Google Scholar 

  16. M. Belgaid, M. Asghar, Appl. Radiat. Isot. 49, 1497 (1998)

    Article  Google Scholar 

  17. A.Y. Korovin, A.Y. Konobeyev, Nucl Instrum Methods. B.103, 15 (1995)

    ADS  Google Scholar 

  18. M.H. Bölükdemir, E. Tel, N.N. Aktı, J. Fusion Energ. 29, 13 (2010)

    Article  Google Scholar 

  19. A. Aydin, E. Tel, A. Kaplan, J. Fusion Energ. 27(4), 308 (2008)

    Article  Google Scholar 

  20. A. Aydin, E. Tel, A. Kaplan, B. Şarer, J. Fusion Energ. 27(4), 314 (2008)

    Article  Google Scholar 

  21. E. Tel, A. Aydin, A. Kaplan, B. Şarer, J. Fusion Energ. 27(3), 188 (2008)

    Article  Google Scholar 

  22. E. Tel, A. Aydin, G. Tanir, Phys. Rev. C 75, 034614 (2007)

    Article  ADS  Google Scholar 

  23. E. Tel, B. Şarer, Ş. Okuducu, A. Aydin, G. Tanir, J. Phys. G: Nucl. Part. Phys. 29, 2169 (2003)

    Article  ADS  Google Scholar 

  24. E. Tel, Ş. Okuducu, M.H. Bölükdemir, G. Tanir, Int. J. Mod. Phys. E. 17(3), 567 (2008)

    Article  ADS  Google Scholar 

  25. E. Tel et al., Acta Phys. Slov. 54(2), 191 (2004)

    Google Scholar 

  26. V.F. Weisskopf, D.H. Ewing, Phys. Rev. 57, 472 (1940)

    Article  ADS  Google Scholar 

  27. P.E. Hodgson, E. Betak, Phys Rep 374, 1–89 (2003)

    Article  ADS  Google Scholar 

  28. M. Blann, Phys. Rev. Lett. 27, 337 (1971)

    Article  ADS  Google Scholar 

  29. M. Blann, Phys. Rev. Lett. 28, 757 (1972)

    Article  ADS  Google Scholar 

  30. M. Blann, H.K. Vonach, Phys. Rev. C 28, 1475 (1983)

    ADS  Google Scholar 

  31. A. Iwamoto, K. Harada, Phys. Rev. C 26, 1821 (1982)

    ADS  Google Scholar 

  32. K. Sato et al., Phys. Rev. C 28, 1527 (1983)

    ADS  Google Scholar 

  33. A.Y. Konobeyev, A.Y. Korovin, Kerntechnik 59, 72 (1994)

    Google Scholar 

  34. C. H. M. Broeders et al., ALICE/ASH—pre-compound and evaporation model code system for calculation of excitation functions, energy and angular distributions of emitted particles in nuclear reactions at intermediate energies, FZK 7183, May 2006, http://bibliothek.fzk.de/zb/berichte/FZKA7183.pdf

  35. AYu. Konobeyev et al., Acta Phys. Slov. 45(6), 705 (1995)

    Google Scholar 

  36. K.K. Gudima et al., Nucl. Phys. A 401, 329 (1983)

    ADS  Google Scholar 

  37. S. G. Mashnik, User Manual for the Code CEM95, Joint Institute for Nuclear Research, Dubna, Moskow Region (1995)

  38. S. G. Mashnik et al., CEM03.01User Manual, Los Alamos National Laboratory Report, LA-UR-05-7321 (2005)

  39. S. G. Mashnik et al., Cem03.03 and LAQGSM03 Event Generators for the MCNP6, MCNPX, and MARS15 Transport Codes. Invited lectures presented at the joint ICTP-IAEAAdvanced Workshop on Model Codes for Spallation Reactions, February 4–8,ICTP, Trieste, Italy, LA-UR-08-2931, Los Alamos (2008)

  40. V.S. Barashenkov, V.D. Toneev, Interaction of high energy particle and nuclei with atomic nuclei (Atomizdat, Moscow, 1972)

    Google Scholar 

  41. V.S. Barashenkov et al., Interaction of particles and nuclei of high and ultrahigh energy with nuclei. Usp. Fiz. Nauk. 109, 91–136 (1973)

    Article  Google Scholar 

  42. A.V. Ignatyuk et al., Yadernaja Fizika 29, 875 (1979)

    Google Scholar 

  43. V.N. Levkovskii, Sov. J. Phys. 18, 361 (1974)

    Google Scholar 

  44. S. Ait-Tahar, Nucl. Phys. 13, 121 (1987)

    Article  Google Scholar 

  45. F.I. Habbani, K.T. Osman, Appl. Radiat. Isot. 54, 283 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Yiğit.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yiğit, M., Tel, E. Alpha Production Cross Sections for Some Target Fusion Structural Materials up to 35 MeV. J Fusion Energ 32, 442–450 (2013). https://doi.org/10.1007/s10894-012-9591-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10894-012-9591-8

Keywords

Navigation