Journal of Fusion Energy

, Volume 32, Issue 4, pp 442–450 | Cite as

Alpha Production Cross Sections for Some Target Fusion Structural Materials up to 35 MeV

Original Research


In the next century, because of the worldwide energy shortage, human life will badly be affected. Nuclear fusion energy is the remarkable solution to the rising energy challenges because it has the great potential for sustainability, economic and reliability. There have been many research and development studies to get energy from fusion. Moreover, the neutron induced reaction cross section data around 14–15 MeV are need to the design and development of nuclear fusion reactors. Thus, the working out the systematics of (n,α) reaction cross sections is very important and necessary for the definition of the excitation curves at around 14–15 MeV energy. In this study, neutron induced reaction cross sections for structural fusion materials such as Sc (Scandium), Co (Cobalt), Ni (Nickel), Cu (Copper), Y (Yttrium), Mo (Molybdenum), Zr (Zirconium) and Nb (Niobium) have been investigated for the (n,α) reactions. The new calculations on the excitation functions of 45 Sc(n,a) 42 K, 59 Co (n,a) 56 Mn, 62 Ni(n,a) 59 Fe, 63 Cu(n,a) 60 Co, 65 Cu(n,a) 62 Co, 89 Y(n,a) 86 Rb, 92 Mo(n,a) 89 Zr, 98 Mo(n,a) 95 Zr, 92 Zr(n,a) 89 Sr, 94 Zr(n,a) 91 Sr and 93 Nb(n,a) 90 Y reactions have been carried out up to 35 MeV incident neutron energies. In these calculations, the pre-equilibrium and equilibrium effects have been investigated. The pre-equilibrium calculations involve the new evaluated the geometry dependent hybrid model, hybrid model and the cascade exciton model. The equilibrium effects of the excitation functions for the investigated reactions are calculated according to the Weisskopf-Ewing model. Additionaly, in the present work, the (n,α) reaction cross sections have calculated by using evaluated empirical formulas developed by Tel et al. at 14–15 MeV energy. The calculated results have been discussed and compared with the available experimental data taken from EXFOR database.


Nuclear reactions Alpha production EXFOR database 


  1. 1.
    E. Tel et al., J. Fusion Energ. 28, 377 (2009)CrossRefGoogle Scholar
  2. 2.
    E.E. Bloom, J. Nucl. Mater. 7, 258 (1998)Google Scholar
  3. 3.
    E. Tel, J. Fusion Energ. 29, 332 (2010)CrossRefGoogle Scholar
  4. 4.
    S. Şahin, M. Übeyli, J. Fusion Energ. 27, 271 (2008)CrossRefGoogle Scholar
  5. 5.
    E. Tel et al., J. Fusion Energ. 31, 184 (2012)CrossRefGoogle Scholar
  6. 6.
    E. Tel et al., J. Fusion Energ. 29, 290 (2010)CrossRefGoogle Scholar
  7. 7.
    M. Übeyli, E. Tel, J. Fusion Energ. 22, 2 (2003)Google Scholar
  8. 8.
    E. Tel et al., J. Fusion Energ. 30, 26 (2011)CrossRefGoogle Scholar
  9. 9.
    E. Tel et al., Kerntechnik. 76(2), 136 (2011)MathSciNetGoogle Scholar
  10. 10.
    M. Walt, in Fast neutron physics, part I: techniques, ed. by J.B. Marion, J.L. Fowler (Interscience, New York, 1960), p. 509Google Scholar
  11. 11.
    S. Şahin et al., Fusion Tech. 10, 84 (1986)Google Scholar
  12. 12.
    Brookhaven National Laboratory, National Nuclear Data Center, EXFOR/CSISRS (Experimental Nuclear Reaction Data File). Database version of October 12, 2009, ( (2009)
  13. 13.
    R.A. Forrest, J. Kopecky, Nucl. Eng. Des. Fusion. 82, 73 (2007)CrossRefGoogle Scholar
  14. 14.
    S.L. Goyal, P. Gur, Pramana 72(2), 355 (2009)ADSCrossRefGoogle Scholar
  15. 15.
    E. Tel, Ş. Okuducu, A. Aydin, B. Şarer, G. Tanir, Acta. Phys. Slov. 54(2), 191 (2004)Google Scholar
  16. 16.
    M. Belgaid, M. Asghar, Appl. Radiat. Isot. 49, 1497 (1998)CrossRefGoogle Scholar
  17. 17.
    A.Y. Korovin, A.Y. Konobeyev, Nucl Instrum Methods. B.103, 15 (1995)ADSGoogle Scholar
  18. 18.
    M.H. Bölükdemir, E. Tel, N.N. Aktı, J. Fusion Energ. 29, 13 (2010)CrossRefGoogle Scholar
  19. 19.
    A. Aydin, E. Tel, A. Kaplan, J. Fusion Energ. 27(4), 308 (2008)CrossRefGoogle Scholar
  20. 20.
    A. Aydin, E. Tel, A. Kaplan, B. Şarer, J. Fusion Energ. 27(4), 314 (2008)CrossRefGoogle Scholar
  21. 21.
    E. Tel, A. Aydin, A. Kaplan, B. Şarer, J. Fusion Energ. 27(3), 188 (2008)CrossRefGoogle Scholar
  22. 22.
    E. Tel, A. Aydin, G. Tanir, Phys. Rev. C 75, 034614 (2007)ADSCrossRefGoogle Scholar
  23. 23.
    E. Tel, B. Şarer, Ş. Okuducu, A. Aydin, G. Tanir, J. Phys. G: Nucl. Part. Phys. 29, 2169 (2003)ADSCrossRefGoogle Scholar
  24. 24.
    E. Tel, Ş. Okuducu, M.H. Bölükdemir, G. Tanir, Int. J. Mod. Phys. E. 17(3), 567 (2008)ADSCrossRefGoogle Scholar
  25. 25.
    E. Tel et al., Acta Phys. Slov. 54(2), 191 (2004)Google Scholar
  26. 26.
    V.F. Weisskopf, D.H. Ewing, Phys. Rev. 57, 472 (1940)ADSCrossRefGoogle Scholar
  27. 27.
    P.E. Hodgson, E. Betak, Phys Rep 374, 1–89 (2003)ADSCrossRefGoogle Scholar
  28. 28.
    M. Blann, Phys. Rev. Lett. 27, 337 (1971)ADSCrossRefGoogle Scholar
  29. 29.
    M. Blann, Phys. Rev. Lett. 28, 757 (1972)ADSCrossRefGoogle Scholar
  30. 30.
    M. Blann, H.K. Vonach, Phys. Rev. C 28, 1475 (1983)ADSGoogle Scholar
  31. 31.
    A. Iwamoto, K. Harada, Phys. Rev. C 26, 1821 (1982)ADSGoogle Scholar
  32. 32.
    K. Sato et al., Phys. Rev. C 28, 1527 (1983)ADSGoogle Scholar
  33. 33.
    A.Y. Konobeyev, A.Y. Korovin, Kerntechnik 59, 72 (1994)Google Scholar
  34. 34.
    C. H. M. Broeders et al., ALICE/ASH—pre-compound and evaporation model code system for calculation of excitation functions, energy and angular distributions of emitted particles in nuclear reactions at intermediate energies, FZK 7183, May 2006,
  35. 35.
    AYu. Konobeyev et al., Acta Phys. Slov. 45(6), 705 (1995)Google Scholar
  36. 36.
    K.K. Gudima et al., Nucl. Phys. A 401, 329 (1983)ADSGoogle Scholar
  37. 37.
    S. G. Mashnik, User Manual for the Code CEM95, Joint Institute for Nuclear Research, Dubna, Moskow Region (1995)Google Scholar
  38. 38.
    S. G. Mashnik et al., CEM03.01User Manual, Los Alamos National Laboratory Report, LA-UR-05-7321 (2005)Google Scholar
  39. 39.
    S. G. Mashnik et al., Cem03.03 and LAQGSM03 Event Generators for the MCNP6, MCNPX, and MARS15 Transport Codes. Invited lectures presented at the joint ICTP-IAEAAdvanced Workshop on Model Codes for Spallation Reactions, February 4–8,ICTP, Trieste, Italy, LA-UR-08-2931, Los Alamos (2008)Google Scholar
  40. 40.
    V.S. Barashenkov, V.D. Toneev, Interaction of high energy particle and nuclei with atomic nuclei (Atomizdat, Moscow, 1972)Google Scholar
  41. 41.
    V.S. Barashenkov et al., Interaction of particles and nuclei of high and ultrahigh energy with nuclei. Usp. Fiz. Nauk. 109, 91–136 (1973)CrossRefGoogle Scholar
  42. 42.
    A.V. Ignatyuk et al., Yadernaja Fizika 29, 875 (1979)Google Scholar
  43. 43.
    V.N. Levkovskii, Sov. J. Phys. 18, 361 (1974)Google Scholar
  44. 44.
    S. Ait-Tahar, Nucl. Phys. 13, 121 (1987)CrossRefGoogle Scholar
  45. 45.
    F.I. Habbani, K.T. Osman, Appl. Radiat. Isot. 54, 283 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Department of Physics, Faculty of Arts and ScienceAksaray UniversityAksarayTurkey
  2. 2.Department of Physics, Faculty of Arts and ScienceOsmaniye Korkut Ata UniversityOsmaniyeTurkey

Personalised recommendations