Advertisement

Journal of Fusion Energy

, Volume 31, Issue 5, pp 426–431 | Cite as

Using Mather-Type Plasma Focus Device for Fabrication of Tungsten Thin Films

  • M. T. Hosseinnejad
  • M. Shirazi
  • Z. Ghorannevis
  • M. Ghoranneviss
  • F. Shahgoli
Original Research

Abstract

Tungsten (W) thin films were deposited on stainless steel–304 substrates using a low energy (2 kJ) plasma focus device. The samples were synthesized at various distances with respect to anode tip (7, 10 and 13 cm) and using same number of focus deposition shots (25 shots). X-ray diffraction (XRD), energy dispersive X-ray atomic force microscopy (AFM) and micro hardness were used to investigate the prepared samples. XRD analysis revealed that the degree of crystallinity of deposited thin films decrease with increasing the distance from the anode tip. AFM results showed that size of the grains on the surface of the films and the surface roughness of deposited samples constantly increase with the increasing of the axial position. Moreover, the hardness measurements revealed that the highest mechanical hardness is obtained when the film is deposited at 7 cm axial position.

Keywords

Plasma focus Thin film Tungsten XRD AFM 

Notes

Acknowledgments

The authors would like to thank Iran National Science Foundation (INSF) for their interest and support of this work. Also the first author gratefully acknowledges Dr. Reza Hoseinnezhad at RMIT University, Australia, for his valuable helps.

References

  1. 1.
    K.Y. Ahn, Thin Solid Films 153, 469 (1987)ADSCrossRefGoogle Scholar
  2. 2.
    S.M. Rossnagel, I.C. Noyan, J.C. Cabral, J. Vac. Sci. Technol. B 20, 2047 (2002)CrossRefGoogle Scholar
  3. 3.
    V.G. Glebovsky, V.Y. Yaschak, V.V. Baranov, E.L. Sackovich, Thin Solid Films 257, 1 (1995)ADSCrossRefGoogle Scholar
  4. 4.
    M. Itoh, M. Hori, S. Nadahara, J. Vac. Sci. Technol. B 9, 149 (1991)CrossRefGoogle Scholar
  5. 5.
    M.S. Aouadi, R.R. Parsons, P.C. Wong, K.A.R. Mitchell, J. Vac. Sci. Tehnol. A 10, 273 (1992)ADSCrossRefGoogle Scholar
  6. 6.
    H. Maier, J. Luthin, M. Balden, S. Lindig, J. Linke, V. Rohde, H. Bolt, J. Nucl. Mater. 307–311, 116 (2002)CrossRefGoogle Scholar
  7. 7.
    Y.G. Shen, Y.W. Mai, Q.C. Zhang, D.R. McKenzie, W.D. McFall, W.E. McBride, J. Appl. Phys. 87, 177 (2000)ADSCrossRefGoogle Scholar
  8. 8.
    H.L. Sun, Z.X. Song, D.G. Guo, F. Ma, K.W. Xu, J. Mater. Sci. Technol. 26, 87 (2010)Google Scholar
  9. 9.
    Y. Pauleau, Ph. Lami, A. Tissier, R. Pantel, J.C. Oberlin, Thin solid Filmms 143, 259 (1986)ADSCrossRefGoogle Scholar
  10. 10.
    S.H. Kim, E.S. Hwang, S.Y. Han, S.H. Pyi, N. Kawk, H. Sohn, J. Kim, G.B. Choi, Electrochem. Solid State Lett. 7, 195 (2004)CrossRefGoogle Scholar
  11. 11.
    J.H. Souk, J.F.O’Hanlon, J. Angillelo, J. Vac. Sci. Technol. A 3, 2289 (1985)ADSCrossRefGoogle Scholar
  12. 12.
    S. Lee, T.Y. Tou, S.P. Moo, M.A. Eissa, A.V. Gholap, K.H. Kwek, S. Mulyodrono, A.J. Smith, A. Suryadi, W. Usada, M. Zakaullah, Am. J. Phys. 56, 62 (1988)ADSCrossRefGoogle Scholar
  13. 13.
    V.A. Gribkov, B. Bienkowska, M. Borowiecki, A.V. Dubrovsky, I. Ivanova-Stanik, L. Karpinski, R.A. Miklaszewski, M. Paduch, M. Scholz, K. Tomaszewski, J.Phys. D: Appl. Phys 40, 1977 (2007)ADSCrossRefGoogle Scholar
  14. 14.
    M. Sadowski, J. Zebrowski, E. Rydygier, J. Kucinski, Plasma Phys. Control. Fusion 30, 763 (1988)ADSCrossRefGoogle Scholar
  15. 15.
    K. Takao, T. Honda, I. Kitamura, K. Masugata, Plasma Sources Sci. Technol. 12, 407 (2003)ADSCrossRefGoogle Scholar
  16. 16.
    S.R. Mohanty, H. Bhuyan, N. Neog, R.K. Rout, E. Hotta, Jpn. J. Appl. Phys. 44, 5199 (2005)ADSCrossRefGoogle Scholar
  17. 17.
    H. Bhuyan, H. Chuaqui, M. Favre, I. Mitchell, E. Wyndham, J.Phys D: Appl. Phys. 38, 1164 (2005)ADSCrossRefGoogle Scholar
  18. 18.
    H. Heo, D.K. Park, Phys. Scr. 65, 350 (2002)ADSCrossRefGoogle Scholar
  19. 19.
    R.S. Rawat, W.M. Chew, P. Lee, T. White, S. Lee, Surf. Coat. Technol. 173, 276 (2003)CrossRefGoogle Scholar
  20. 20.
    M. Hassan, R.S. Rawat, P. Lee, S.M. Hassan, A. Qayyum, R. Ahmad, G. Murtaza, M. Zakaullah, Appl. Phys. A 90, 669 (2008)ADSCrossRefGoogle Scholar
  21. 21.
    R.S. Rawat, V. Aggarwal, M. Hassan, P. Lee, S.V. Springham, T.L. Tan, S. Lee, Appl. Surf. Sci. 255, 2932 (2008)ADSCrossRefGoogle Scholar
  22. 22.
    G. Murtaza, S.S. Hussain, N.U. Rehman, S. Naseer, M. Shafiq, M. Zakaullah, Surf. Coat. Technol. 205, 3012 (2011)CrossRefGoogle Scholar
  23. 23.
    S. Zeb, M. Sadiq, A. Qayyum, G. Murtaza, M. Zakaullah, Mater. Chem. Phys. 103, 235 (2007)CrossRefGoogle Scholar
  24. 24.
    M.T. Hosseinnejad, M. Ghoranneviss, G.R. Etaati, M. Shirazi, Z. Ghorannevis, Appl. Surf. Sci. 257, 7653 (2011)ADSCrossRefGoogle Scholar
  25. 25.
    M.T. Hosseinnejad, G.R. Etaati, M. Ghoranneviss, M. Shirazi, Z. Ghorannevis, J. Fusion Energ. 30, 382 (2011)CrossRefGoogle Scholar
  26. 26.
    M.T. Hosseinnejad, Z. Ghorannevis, M.Ghoranneviss, M. Soltanveisi, M. Shirazi, J. Fusion Energ., doi: 10.1007/s10894-011-9422-3
  27. 27.
    K.T. Rie, J. Whole, Surf. Coat. Technol. 112, 226 (1999)CrossRefGoogle Scholar
  28. 28.
    F. Hollstein, D. Kitta, P. Louda, F. Pacal, J. Meinhardt, Surf. Coat. Technol. 142–144, 1063 (2001)CrossRefGoogle Scholar
  29. 29.
    J.W. Mather, Phys. Fluids 7, 5 (1964)CrossRefGoogle Scholar
  30. 30.
    M. Hassan, A. Qayyum, R. Ahmad, G. Murtaza, M. Zakaullah, J. Phys. D: Appl. Phys. 40, 769 (2007)ADSCrossRefGoogle Scholar
  31. 31.
    S. Javadi, M. Ghoranneviss, A. Hojabri, M. Habibi, M.T. Hosseinnejad, J. Fusion Energ., doi: 10.1007/s10894011-9461-9
  32. 32.
    M. Catherine, J. Cotell, K. Hirvonen, Surf. Coat. Technol. 81, 118 (1996)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • M. T. Hosseinnejad
    • 1
  • M. Shirazi
    • 1
  • Z. Ghorannevis
    • 1
  • M. Ghoranneviss
    • 1
  • F. Shahgoli
    • 1
  1. 1.Plasma Physics Research Center, Science and Research BranchIslamic Azad UniversityTehranIran

Personalised recommendations