Journal of Fusion Energy

, Volume 31, Issue 4, pp 317–324 | Cite as

Combined Effect of Ion Temperature and Magnetic Field on Collisionless Sheath Structure

Review Article


A steady state two-fluid model has been used to study the characteristics of the collisionless plasma sheath in the presence of an external magnetic field and by taking into account both the ion temperature and the ion drift velocity at the sheath edge. The number and momentum equations of ions, the Boltzmann distribution of electrons and Poisson equations are solved numerically. The dependence of the Bohm magnetized sheath criterion to ion temperature is examined. It is shown that the ion temperature has significant effects on the sheath characteristics such as ion velocity, charged particles densities and electric potential. In the specific orientations of the magnetic field, it is found that by increasing the ion temperature, the ions do not achieve energy and the kinetic energy of the ions in the depth direction reaches the specific value at bigger distance from the plasma-sheath boundary.


Fluid model Ion temperature Bohm criterion Plasma sheath Ion drift velocity 



This work was supported by the National Center for Scientific and Technical Research (CNRST), under contract: URAC-07. The authors would like to thank Pr. Ali E. Abdou of Department of Mechanical and Nuclear Engineering Kansas State University for helpful discussions.


  1. 1.
    R.N. Franklin, J. Phys. D Appl. Phys. 36, 309 (2003)ADSCrossRefGoogle Scholar
  2. 2.
    J. Liu, Z. Wang, X. Wang, Phys. Plasmas 10, 3032 (2003)ADSCrossRefGoogle Scholar
  3. 3.
    X. Zou, J.Y. Liu, Y. Gong, Z.X. Wang, Y. Liu, X.G. Wang, Vacuum 73, 681 (2004)CrossRefGoogle Scholar
  4. 4.
    J.G. Andrews, R.H. Varey, Phys. Fluids 14, 339 (1971)ADSCrossRefGoogle Scholar
  5. 5.
    X. Zou, M.H. Qiu, H.P. Liu, L.J. Zhang, J.Y. Liu, Y. Gong, Vacuum 83, 205 (2009)CrossRefGoogle Scholar
  6. 6.
    R.N. Franklin, J. Phys. D Appl. Phys. 38, 3412 (2005)ADSCrossRefGoogle Scholar
  7. 7.
    S.F. Masoudi, Vacuum 81, 871 (2007)CrossRefGoogle Scholar
  8. 8.
    S.F. Masoudi, J. Fusion Energ. 29, 275 (2010)CrossRefGoogle Scholar
  9. 9.
    M. Lei, Y. Zhang, W. Ding, J. Liu, X. Wang, Plasma Sci. Technol. 8, 544 (2006)ADSCrossRefGoogle Scholar
  10. 10.
    G.C. Das, B. Singha, J. Chutia, Phys. Plasmas 6, 3685 (1999)ADSCrossRefGoogle Scholar
  11. 11.
    B. Alterkop, J. Appl. Phys. 95, 1650 (2003)ADSCrossRefGoogle Scholar
  12. 12.
    M. Khoramabadi, H. Ghomi, J Plasma Fusion Res 8, 1399 (2009)Google Scholar
  13. 13.
    M. Khoramabadi, H. Ghomi, M. Ghorannevis, J. Fusion Energ. 29, 365 (2010)CrossRefGoogle Scholar
  14. 14.
    J. Liu, F. Wang, J. Sun, Physics of Plasmas 18, 013506-1 (2011)MathSciNetADSGoogle Scholar
  15. 15.
    M. Khomabadi, H. Ghomi, P.K. Shukla, J. Appl. Phys. 109, 073307-1 (2011)ADSGoogle Scholar
  16. 16.
    M. El Kaouini, H. Chatei, I. Driouch, M. El Hammouti, J. Fusion Energ. 30, 199 (2011)CrossRefGoogle Scholar
  17. 17.
    K. Yasserian, M. Aslaninejad, M. Borghei, M. Eshghabadi, J. Theor. Appl. Phys. 4–2, 26 (2010)Google Scholar
  18. 18.
    S.I. Krasheninnikov, D.J. Sigmar, P.N. Yushmanov, Phys. Plasmas 2, 1972 (1995)ADSCrossRefGoogle Scholar
  19. 19.
    M.M. Hatami, B. Shokri, A.R. Niknam, J. Phys. D Appl. Phys. 42, 1 (2009)CrossRefGoogle Scholar
  20. 20.
    S.F. Masoudi, Zh. Ebrahiminejad, Eur. Phys. J. D 59, 421 (2010)ADSGoogle Scholar
  21. 21.
    S.F. Masoudi, S.S. Esmaeili, S. Jazavandi, Vacuum 84, 382 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.LPMR, Department of Physics, Faculty of ScienceUniversity Mohammed IOujdaMorocco

Personalised recommendations