Journal of Fusion Energy

, Volume 31, Issue 4, pp 374–378 | Cite as

Characterization of Tantalum Oxide Thin Films Prepared by Cylindrical Magnetron Sputtering: Influence of O2% in the Gas Mixture

  • M. R. Hantehzadeh
  • E. Hassani Sadi
  • E. Darabi
Original Research


The amorphous tantalum oxide thin films were prepared by DC reactive magnetron cylindrical sputtering onto p-type silicon (100) substrate. We report the composition and optical properties of thin films under O2 amount variation. The sample’s reflectance was measured with a UV-Vis-NIR spectrophotometer (320–850 nm). The optical characterization of thin layers was analyzed by ellipsometry in spectral region for wavelength from 250 to 850 nm to obtain the refractive index and film’s thickness. The RMS roughness and grain size were investigated by atomic force microscope (AFM). Simulations to Rutherford backscattering spectroscopy (RBS) data revealed film’s stoichiometry. The reflectance, refractive index, thickness, RMS roughness and grain size were found to be affected by increasing oxygen amount. We calculated the porosity of grown layers using measured refractive index at the wavelength of 633 nm.


Tantalum oxide Sputtering Optical properties Morphology Composition 


  1. 1.
    F. Rubio, J.M. Albella, J. Denis, J.M. Martinz-Duart, J. Vac. Sci. Technol. 21, 1043 (1982)ADSCrossRefGoogle Scholar
  2. 2.
    E.G. Farhd, Z.T. Fatma, G.T. Gali, Thin Solid Films 295, 11–15 (1997)CrossRefGoogle Scholar
  3. 3.
    W.J. Liu, X.J. Guo, C.H. Chen, Surf. Coat. Technol. 196, 69–75 (2005)CrossRefGoogle Scholar
  4. 4.
    I. Proqueras, J. Marti, E. Bertran, Thin Solid Films 343, 449 (1999)ADSCrossRefGoogle Scholar
  5. 5.
    Y. Imai, A. Watanabe, M. Mukaida, K. Osato, T. Tsunoda, T. Kameyama, K. Fukuda, Thin Solid Films 261, 76 (1995)ADSCrossRefGoogle Scholar
  6. 6.
    Nalwa H.S., Handbook of surfaces and interfaces of materials (Academic Press, San Diego, USA, 2001) p. 439Google Scholar
  7. 7.
    N. Gaillard, L. Pinzelli, M. Gros-Jean, Appl. Phys. Lett. 89, 133506 (2006)ADSCrossRefGoogle Scholar
  8. 8.
    Z. Todorva, N. Donkov, Z. Ristic, N. Bundaleski, S. Petrovic, M. Petkov, Plasma Process. Polym. 3, 174 (2006)CrossRefGoogle Scholar
  9. 9.
    F.E. Ghodsi, F.Z. Tepehan, Sol. Energ. Mater. Sol. Cell 59, 367–375 (1999)CrossRefGoogle Scholar
  10. 10.
    S. Yidirim, K. Ulutas, D. Deger, E.O. Zayim, I. Turhan, Vacuum 777(3), 329–335 (2005)CrossRefGoogle Scholar
  11. 11.
    G. Marius, H. Wilhelm, K.T. Markus, Thin Solid Films 516(2/4), 136–140 (2007)Google Scholar
  12. 12.
    S.G. Yoon, H.K. Kim, H.M. Lee, D.H. Yoon, Thin Solid Films 475, 239 (2005)ADSCrossRefGoogle Scholar
  13. 13.
    Y.-H. Pai, C.-C. Chou, F.-S. Shieu, Mater. Chem. Phys. 107, 524–527 (2008)CrossRefGoogle Scholar
  14. 14.
    E. Franke, M. Schubert, C.L. Trimble, M.J. DeVries, J.A. Woollam, Thin Solid Films 388, 283–289 (2001)ADSCrossRefGoogle Scholar
  15. 15.
    S.V. Jagadeesh Chandra, C.-J. Choi, S. Uthanna, G. Mohan Rao, Mater. Sci. Semicond. Process. 13, 245–251 (2010)Google Scholar
  16. 16.
    S.V. Jagadeesh Chandra, S. Uthanna, G. Mohan Rao, Appl. Surf. Sci. 254, 1953–1960 (2008)Google Scholar
  17. 17.
    J.-c Zhou, D.-t. Luo, Y.-z. Li, Z. Liu, Trans. Nonferrous Metals Soc. China 19, 359–363 (2009)CrossRefGoogle Scholar
  18. 18.
    J.M. Ngaruiya, S. Venkataraj, R. Drese, O. Kappertz, T.P. Leervad Pedersen, M. Wuttig, Phys. Stat. sol. (a). 198, 99–110 (2003)Google Scholar
  19. 19.
    O. Madelung, M. Schulz, H. Weiss, Landolt-Börstein Semiconductors, Physics of non-tetrahedrally bonded binary compounds III (Springer, Berlin, 1984)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • M. R. Hantehzadeh
    • 1
  • E. Hassani Sadi
    • 1
  • E. Darabi
    • 1
  1. 1.Plasma Physics Research Center, Science and Research BranchIslamic Azad UniversityTehranIran

Personalised recommendations