Journal of Fusion Energy

, Volume 31, Issue 4, pp 368–373 | Cite as

Trapping of Free Electrons in Multipole System

  • Mohammad Mahdavi
  • Fatemeh Khodadadi Azadboni
  • Reza Khodadadi Azadboni
Original Research


In this paper, the effective Parameters in the confinement and trapping of fast electrons in plasma source Such as; plasma pressure, wall material of plasma chamber and magnetic mirror rate have been investigated with using Comsol & Geant4 code. The calculations are shown that the Multicusp magnetic field was effective the pressure less than 5 mTor, and the confinement effect becomes stronger with decreasing pressure. It is equivalent to a higher yield of output ions of plasma source. The number of fast electrons trapped in the magnetic field increases with increasing magnetic field intensity and using aluminum for wall material. Optimum conditions of confinement plasma, leading to increased the hot electron density, and ionization efficiency is increased. The results of investigations have demonstrated good correspondence with theoretical calculations, therefore there is the adequacy of the developed approach and the possibility to build more effective source ion on this basis.


Plasma pressure Multipole field Trapping electrons 


  1. 1.
    K. Makino, T. Sakurabayasi, K. Miyamoto, M. Bacal, M. Ogasawara, Rev. Sci. Instrum. 75, 1650–1652 (2004)ADSCrossRefGoogle Scholar
  2. 2.
    I.G. Brown, The physics and technology of ion sources, Chap. 1 (Wiley-VCH, 2004)Google Scholar
  3. 3.
    B. Rubin, C. Farnell, J. Williams, J. Vaughn, T. Schneider, D. Ferguson, Plasma Sources Sci. Technol. 18, 1 (2009)CrossRefGoogle Scholar
  4. 4.
    Y.I. Belchenko, Y. Oka, O. Kaneko, Y. Takeiri, K. Tsumori, Rev. Sci. Instrum. 73, 1746 (2002)ADSCrossRefGoogle Scholar
  5. 5.
    P. Svarnas, B.M. Annaratone, S. Béchu, J. Pelletier, M. Bacal, Plasma Sources Sci. Technol. 18, 1–7 (2009)CrossRefGoogle Scholar
  6. 6.
    T. Sakurabayashi, A. Hatayama, K. Miyamoto, Rev. Sci. Instrum. 73, 1048–1050 (2002)ADSCrossRefGoogle Scholar
  7. 7.
    P. Machima, M.M.M. Bilek, O.R. Monteiro, I.G. Brown, Rev. Sci. Instrum. 71, 3373 (2000)ADSCrossRefGoogle Scholar
  8. 8.
    S.V. Golubev, S.V. Razin, V.E. Semenov, A.N. Smirnov, A.V. Vodopyanov, V.G. Zorin, Rev. Sci. Instrum. 71, 669 (2000)ADSCrossRefGoogle Scholar
  9. 9.
    Y. Inouchi, Sh. Dohi, M. Tanii, M. Konishi, M. Naito, AIP Conf. Proc. 1321, 500–503 (2011)ADSCrossRefGoogle Scholar
  10. 10.
    V.I. Voznyi, V.I. Miroshnichenko, S.N. Mordyk, V.E. Storizhko, D.P. Shulha, Plasma Phys. 15, 142–144 (2009)Google Scholar
  11. 11.
    K.N. Leung, Rev. Sci. Instrum. 65, 1165–1169 (1994)ADSCrossRefGoogle Scholar
  12. 12.
    M. Kronberger, D. Küchler, J. Lettry, Rev. Sci. Instrum. 81, 02A708-1 (2010)CrossRefGoogle Scholar
  13. 13.
    J. Strnat, Proc. IEEE 78, 923 (1990)ADSCrossRefGoogle Scholar
  14. 14.
    O.A. Popov, High density plasma sources (Noyes Publications, New Jersey, 1995)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Mohammad Mahdavi
    • 1
  • Fatemeh Khodadadi Azadboni
    • 1
    • 2
  • Reza Khodadadi Azadboni
    • 2
  1. 1.Department of PhysicsMazandaran UniversityBabolsarIran
  2. 2.Young Researchers Club, Science and Research BranchIslamic Azad UniversitySariIran

Personalised recommendations