Journal of Fusion Energy

, Volume 31, Issue 1, pp 89–95 | Cite as

Positron Annihilation Lifetime Spectroscopy Study of Neutron Irradiated High Temperature Superconductors YBa2Cu3O7-δ for Application in Fusion Facilities

  • J. Veterníková
  • M. Chudý
  • V. Slugeň
  • M. Eisterer
  • H. W. Weber
  • S. Sojak
  • M. Petriska
  • R. Hinca
  • J. Degmová
  • V. Sabelová
Original Research


This study focuses on the crystallographic defects introduced by neutron irradiation and the resulting changes of the superconducting properties in the high temperature superconductor YBa2Cu3O7-δ. This material is considered to be most promising for magnet systems in future fusion reactors. Two different bulk samples, pure non-doped YBa2Cu3O7-δ (YBCO) and multi-seed YBa2Cu3O7-δ doped by platinum (MS2F) were studied prior to and after irradiation in the TRIGA MARK II reactor in Vienna. Neutron irradiation is responsible for a significant enhancement of the critical current densities as well as for a reduction in critical temperature. The accumulation of small open volume defects (<0.5 nm) partially causes those changes. These defects were studied by positron annihilation lifetime spectroscopy at room temperature. A high concentration of Cu–O di-vacancies was found in both samples, which increased with neutron fluence. The defect concentration was significantly reduced after a heat treatment.


YBa2Cu3O7-δ Fast neutron irradiation Positron annihilation spectroscopy Critical current density 



N. Hari Babu, Brunel Centre for Advanced Solidification Technology (BCAST), Brunel University, and P. Diko from the Slovak Academy of Sciences (SAV) are acknowledged for the preparation of the investigated materials. The Nano Engineered Superconductors for Power Applications (NESPA) and VEGA 01/0129/09 grants are also acknowledged.


  1. 1.
    D. Maisonnier, I. Cook, S. Pierre, B. Lorenzo, D.P. Luigi, G. Luciano, N. Prachai, Fus. Eng. Des. 81, 1123 (2006)CrossRefGoogle Scholar
  2. 2.
    S.R. Foltyn, L. Civale, J.L. MacManus-Driscoll, Q.X. Jia, B. Maiorov, H. Wang, M. Maley, Nat. Mater. 6, 631 (2007)CrossRefADSGoogle Scholar
  3. 3.
    A. Xu, J.J. Jaroszynski, F. Kametani, Z. Chen, D.C. Larbalestier, Y.L. Viouchkov, Y. Chen, Y. Xie, V. Selvamanickam, Supercond. Sci. Technol. 23, 014003 (2010)CrossRefADSGoogle Scholar
  4. 4.
    F. Seitz, Rev. Mod. Phys. 34, 656 (1962)CrossRefADSGoogle Scholar
  5. 5.
    F.M. Sauerzopf, H.P. Wiesinger, W. Kritscha, H.W. Weber, G.W. Crabtree, J.Z. Liu, Phys. Rev. B 43, 3091 (1991)CrossRefADSGoogle Scholar
  6. 6.
    M. Eisterer, R. Fuger, M. Chudy, F. Hengstberger, H.W. Weber, Supercond. Sci. Technol. 23, 014009 (2010)CrossRefADSGoogle Scholar
  7. 7.
    R.T. Santoro, Y. Gohar, R.R. Parker, G. Shatalov, M.E. Sawan, H.Y. Khater, Fusion Eng. Des. 27, 62 (1995)Google Scholar
  8. 8.
    R.T. Santoro, Radiation shielding for fusion reactors. in Proceedings of the ICRS-9 conference. (Tsukuba, Japan, Oct. 1999), pp. 17–22Google Scholar
  9. 9.
    JAEA R&D Review 2006, Report of Japan Atomic Energy Agency (JAEA). Available via Cited 12 May 2011
  10. 10.
    M.C. Frischherz, M.A. Kirk, J. Farmer, L.R. Greenwood, H.W. Weber, Physica C 232, 309 (1994)CrossRefADSGoogle Scholar
  11. 11.
    J. Giapintzakis, W.C. Lee, J.P. Rice, D.M. Ginsberg, I.M. Robertson, Phys. Rev. B 45, 10677 (1992)CrossRefADSGoogle Scholar
  12. 12.
    F.M. Sauerzopf, Phys. Rev. B 57, 10959 (1998)CrossRefADSGoogle Scholar
  13. 13.
    F.M. Saurezopf, M. Werner, H.W. Weber, R.A. Suris, D.V. Kulikov, Yu.V. Trushin, V.S. Kharlamov, Physica C 282, 1333 (1997)CrossRefADSGoogle Scholar
  14. 14.
    S. Jin, T.H. Tiefel, R.C. Sherwood, R.B. van Dover, M.E. Davis, G.W. Kammlot, R.A. Fastnacht, Appl. Phys. Lett. 52, 2074 (1988)CrossRefADSGoogle Scholar
  15. 15.
    J.C.L. Chow, P.C.W. Fung, J. Superconduct. 6, 365 (1993)CrossRefADSGoogle Scholar
  16. 16.
    O.F. de Lima, V.P.S. Awana, R.A. Ribeiro, M.A. Avila, Europhys. Lett. 51, 174 (2000)CrossRefADSGoogle Scholar
  17. 17.
    C.P. Bean, Phys. Rev. Lett. 8, 250 (1962)CrossRefMATHADSGoogle Scholar
  18. 18.
    Oxford Instruments Superconductivity, Vibrating Sample Magnetometer Superconducting system with integral VTI, Version 1.0, July 2000Google Scholar
  19. 19.
    M. Chudy, High Temperature Superconductors for Fusion Magnets. Doctoral thesis (Atomic Institute, Vienna University of Technology, Vienna, Austria, 2011)Google Scholar
  20. 20.
    R. Kraus-Rehberg. S. H. Leipner, Positron Annihilation in Semiconductors (Springer, Berlin, Germany, 1998) ISBN 3-540-64371-0Google Scholar
  21. 21.
    M. Petriska, A. Zeman, V. Slugeň, V. Kršjak, S. Sojak, Phys. Stat. Solidi. C 60, 2465 (2009)CrossRefGoogle Scholar
  22. 22.
    K.O. Jensen, R.M. Nieminen, M.J. Puska, J.Phys. Condens. Matter 1, 3727 (1989)CrossRefADSGoogle Scholar
  23. 23.
    A. Bhahathi, C.S. Sundar, Y. Hariharan, J. Phys. Condens. Matter 1, 1467 (1989)CrossRefADSGoogle Scholar
  24. 24.
    S. Ishibashi, R. Yamamoto, M. Doyama, T. Matsumoto, J. Phys. Condens. Matter 3, 9169 (1991)CrossRefADSGoogle Scholar
  25. 25.
    K. Petersen, Cystal Defects Studied by Positrons. (Politeknik Forlag, Lyngby, Denmark 1978). ISBN 87 502 0488 2Google Scholar
  26. 26.
    P. Hautojarvi, C. Corbel, Positron spectroscopy of defects in metals and semiconductors, in Positron Spectroscopy of Solids. (Societa Italiana di Fisica, IOS Press, Amsterdam, Netherlands, 1995). ISBN 90 5199 203 3Google Scholar
  27. 27.
    J. Zhang, F. Liu, G. Cheng, J. Shang, J. Liu, S. Cao, Z. Liu, Phys. Lett. A 201, 70 (1995)CrossRefADSGoogle Scholar
  28. 28.
    J. Kansy, Nucl. Instr. Meth. Phys. Res. A 374, 235 (1996)CrossRefADSGoogle Scholar
  29. 29.
    C. F. Laub, T. L. Kuhl, How bad is good? A critical look at the fitting of reflectivity models using the reduced Chi-square statistic, in SNSHFIR Users Meeting 2005, (ORNL Research Center, USA, Oct. 11–13, 2005)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • J. Veterníková
    • 1
  • M. Chudý
    • 2
  • V. Slugeň
    • 1
  • M. Eisterer
    • 2
  • H. W. Weber
    • 2
  • S. Sojak
    • 1
  • M. Petriska
    • 1
  • R. Hinca
    • 1
  • J. Degmová
    • 1
  • V. Sabelová
    • 1
  1. 1.Department of Nuclear Physics and Technology, Faculty of Electrical Engineering and Information TechnologySlovak University of TechnologyBratislavaSlovak Republic
  2. 2.Vienna University of Technology—AtominstitutViennaAustria

Personalised recommendations