Advertisement

Journal of Fusion Energy

, Volume 30, Issue 2, pp 111–115 | Cite as

Preliminary Results of IS Plasma Focus as a Breeder of Short-Lived Radioisotopes 12C(d,n)13N

  • S. M. Sadat Kiai
  • M. Elahi
  • S. Adlparvar
  • E. Shahhoseini
  • S. Sheibani
  • H. Ranjber akivaj
  • S. Alhooie
  • A. Safarien
  • S. Farhangi
  • N. Aghaei
  • S. Amini
  • M. M. Khalaj
  • A. R. Zirak
  • A. A. Dabirzadeh
  • J. Soleimani
  • F. Torkzadeh
  • M. M. Mousazadeh
  • K. Moradi
  • M. Abdollahzadeh
  • A. Talaei
  • A. A. Zaeem
  • A. Moslehi
  • A. Kashani
  • A. R. Babazadeh
  • F. Bagiyan
  • M. Ardestani
  • A. Roozbahani
  • H. Pourbeigi
  • H. Tajik Ahmadi
  • M. A. Ahmadifaghih
  • M. S. Mahlooji
  • B. N. Mortazavi
  • F. Zahedi
Original Research

Abstract

Modified IS (Iranian Sun) plasma focus (10 kJ,15 kV, 94 μF, 0.1 Hz) has been used to produce the short-lived radioisotope 13N (half-life of 9.97 min) through 12C(d,n)13N nuclear reaction. The filling gas was 1.5–3 torr of hydrogen (60%) deuterium (40%) mixture. The target was solid nuclear grade graphite with 5 mm thick, 9 cm width and 13 in length. The activations of the exogenous target on average of 20 shots (only one-third acceptable) through 10–13 kV produced the 511 keV gamma rays. Another peak found at the 570 keV gamma of which both was measured by a NaI portable gamma spectrometer calibrated by a 137Cs 0.25 μCi sealed reference source with its single line at 661.65 keV and 22Na 0.1 μCi at 511 keV. To measure the gamma rays, the graphite target converts to three different phases; solid graphite, powder graphite, and powder graphite in water solution. The later phase approximately has a doubled activity with respect to the solid graphite target up to 0.5 μCi of 511 keV and 1.1 μCi of 570 keV gamma lines were produced. This increment in activity was perhaps due to structural transformation of graphite powder to nano-particles characteristic in liquid water.

Keywords

Plasma focuses device Current and current derivative Graphite target Activity measurements 

References

  1. 1.
    J. S. Brzosko et al., American Institute of Physics, 0-7354-0015-6/01/$18.00 (2001)Google Scholar
  2. 2.
    M. V. Roshan et al., J. Plasma Fusion Res. SERIES, 8, 1273–1276 (2009)Google Scholar
  3. 3.
    J. S. Brzosko et al., in Current Trends in International Fusion Research, ed. by E. Panerella (Plenum Press New York, 1997), pp. 11–32Google Scholar
  4. 4.
    B. Bienkowska et al., Acta Physica Slovaca 54(4), 401–407 (2004)Google Scholar
  5. 5.
    E. Angeli et al., Appl Radiat Isot 63, 545–551 (2005)CrossRefGoogle Scholar
  6. 6.
    S.M. Sadat Kiai et al., J. Fusion Energ 29(5), 421–426 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • S. M. Sadat Kiai
    • 1
  • M. Elahi
    • 1
  • S. Adlparvar
    • 1
  • E. Shahhoseini
    • 1
  • S. Sheibani
    • 1
  • H. Ranjber akivaj
    • 1
  • S. Alhooie
    • 1
  • A. Safarien
    • 1
  • S. Farhangi
    • 1
  • N. Aghaei
    • 1
  • S. Amini
    • 1
  • M. M. Khalaj
    • 1
  • A. R. Zirak
    • 1
  • A. A. Dabirzadeh
    • 1
  • J. Soleimani
    • 1
  • F. Torkzadeh
    • 1
  • M. M. Mousazadeh
    • 1
  • K. Moradi
    • 1
  • M. Abdollahzadeh
    • 1
  • A. Talaei
    • 1
  • A. A. Zaeem
    • 1
  • A. Moslehi
    • 1
  • A. Kashani
    • 1
  • A. R. Babazadeh
    • 1
  • F. Bagiyan
    • 1
  • M. Ardestani
    • 1
  • A. Roozbahani
    • 1
  • H. Pourbeigi
    • 1
  • H. Tajik Ahmadi
    • 1
  • M. A. Ahmadifaghih
    • 1
  • M. S. Mahlooji
    • 1
  • B. N. Mortazavi
    • 1
  • F. Zahedi
    • 1
  1. 1.Nuclear Science Research SchoolNuclear Science & Technology Research Institute (N.S.T.R)TehranIran

Personalised recommendations