Journal of Fusion Energy

, 28:350 | Cite as

Plasma Focus Device as a Breeder of Proton to Produce Short Lived Radioisotope 18F

  • Alireza Asle-Zaeem
  • S. Mahmood Sadat Kiai
  • Mahmood Sedaghatizadeh
  • Shirin Adlparvar
  • Shahab Sheibani
Original Paper


In a plasma focus device, the nuclear fusion products are created through the thermal and non-thermal (beam-target) mechanisms. The beam target character of the pinched plasma is used to determine the yield of 3.02 Mev protons (when deuterium filling gas is used) at the optimized regime. For this situation, a combination of “moving boiler” model and a shock wave theory are employed. The numerical simulations for the production of the positron emitter nuclide, 18F (T 1/2 = 110 min; widely used in positron emission tomography), for two Mather type devices (NX2 and PF1000) show that, the rules of the drift velocity as well as the drive parameters have an high impact on the final yields.


Pinched plasma Beam-target mechanism Moving boiler Drift velocity Drive parameter Short-lived radioisotopes 


  1. 1.
    M. Scholz, Institute of Plasma Physics and Laser Microfusion, Recent results of MJ plasma-focus experiment, 6th DZP OXFORD, (IPPLM) (2005)Google Scholar
  2. 2.
    J.S. Brzosko, V. Nardi, Phys. Lett. A 155, 162–168 (1991)CrossRefADSGoogle Scholar
  3. 3.
    A.A. zaeem, S.M. Sadatkiai, M. Sedaghatizade, S. Adlparvar, S. Sheibani, J. Fusion Energy (2008)Google Scholar
  4. 4.
    A. Ergisto et al., Nucl. Technol. Radiat. Prot. 20(1), 33–37 (2005)CrossRefGoogle Scholar
  5. 5.
    B. Bienkowska, S. Jednorog, I.M. Ivanova-Stanik, M. Scholz, A. Szydlowski, Acta physica slovaca 54(4), 401–407 (2004)Google Scholar
  6. 6.
    J.S. Berzosko et al., Application of Accelerators in research and industry, sixteen l.Conf (2001)Google Scholar
  7. 7.
    National nuclear data center (Brookhaven national laboratory),
  8. 8.
    V.A. Gribkov et al., J. Phys. D Appl. Phys. 40, 3592–3607 (2007)CrossRefADSGoogle Scholar
  9. 9.
    K. Hubner, H. Bruhns, K. Steinmetz, Phys. Lett. 69A(4) (1987)Google Scholar
  10. 10.
    S. Lee, IEEE Trans. Plasma Sci. 19(5), 912 (1991)CrossRefADSGoogle Scholar
  11. 11.
    S. Lee, A. Serban, IEEE Trans. Plasma Sci. 24, 1101 (1996)CrossRefADSGoogle Scholar
  12. 12.
    K.H. Kwek et al., IEEE Trans. Plasma Sci. 38(1), 103 (1989)Google Scholar
  13. 13.
    L. Soto, Plasma Phys. Controlled Fusion 47, A361–A381 (2005)CrossRefADSGoogle Scholar
  14. 14.
    S. Lee Plasma focus (Radiative) Computational Model and Code,; e-published by CKP Lee, NTU/NIE-first published June (2000)
  15. 15.
    A. Serban, S. Lee, J. Plasma Phys. 60(1), 3–15 (1998)CrossRefADSGoogle Scholar
  16. 16.
    T. Zhang, R.S. Rawat, S.M. Hassan, J.J. Lin, S. Mahmood, T.L. Tan, S.V. Springham, V.A. Gribkov, P. Lee, S. Lee, IEEE Trans. Plasma Sci. 34(5), 2356–2360 (2006)CrossRefADSGoogle Scholar
  17. 17.
    V. Siahpoush, M.A. Tafreshi, S. Sobhanian, S. Khorram, Plasma Phys. Control Fusion 47, 1065–1075 (2005)CrossRefADSGoogle Scholar
  18. 18.
    S. Goudarzi, R. Amrollahi, R.S. Moghaddam, J. Fusion Energy 27, 195–199 (2008)CrossRefGoogle Scholar
  19. 19.
    S. Lee, P. Lee, S.H. Saw, R.S. Rawat, Plasma Phys. Control. Fusion 50 065012 (8pp) (2008)Google Scholar
  20. 20.
    K.S. Krane, Introductory Nuclear Physics (Wiley, NY, 1988)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Alireza Asle-Zaeem
    • 1
  • S. Mahmood Sadat Kiai
    • 2
  • Mahmood Sedaghatizadeh
    • 1
  • Shirin Adlparvar
    • 2
  • Shahab Sheibani
    • 2
  1. 1.Department of physicsKhaje Nasir University of Technology (K.N. Toosi)TehranIran
  2. 2.Nuclear Science Research SchoolA.E.O.I, Nuclear Science & Technology Research Institute (N.S.T.R)TehranIran

Personalised recommendations