Advertisement

Journal of Fusion Energy

, Volume 27, Issue 4, pp 235–240 | Cite as

The Challenge of Wall–Plasma Interaction with Pulsed Megagauss Magnetic Fields

  • R. E. Siemon
  • B. S. Bauer
  • T. J. Awe
  • M. A. Angelova
  • S. Fuelling
  • T. Goodrich
  • I. R. Lindemuth
  • V. Makhin
  • W. L. Atchison
  • R. J. Faehl
  • R. E. Reinovsky
  • P. J. Turchi
  • J. H. Degnan
  • E. L. Ruden
  • M. H. Frese
  • S. F. Garanin
  • V. N. Mokhov
Original Paper

Abstract

A method is described for choosing experimental parameters in studies of high-energy-density (HED) physics relevant to fusion energy, as well as other applications. An important HED issue for magneto-inertial fusion (MIF) is the interaction of metal pusher materials with megagauss (MG) magnetic fields during liner compression of magnetic flux and fusion fuel. The experimental approach described here is to study a stationary conductor when a pulsed current generates MG fields at the surface, instead of studying the inner surface of a moving liner. This places less demand upon the pulsed power system, and significantly improves diagnostic access. Thus the deceptively simple geometry chosen for this work is that of a z pinch composed of a metal cylinder carrying large current. Consideration of well known stability issues for the z pinch shows that for given peak current and rise time from a particular power supply, there is a minimum radius and thus maximum B field that can be created without disruption of the conductor before peak current. The reasons are reviewed why MG levels of magnetic field, as required for MIF, result in high temperatures and plasma formation at the surface of the metal in response to Ohmic heating. The distinction is noted between the liner regime obtained with cylindrical rods, which have a skin depth small compared to the conductor radius, and the exploding thin-wire regime, which has skin depth larger than the wire radius. A means of diagnostic development is described using a small facility (DPM15) built at the University of Nevada, Reno. It is argued that surface plasma temperature measurements in the 10-eV range are feasible based on the intensity of visible light emission.

Keywords

Magneto-inertial fusion High energy density physics Exploding wires Megagauss fields Brightness temperature z-Pinch Flute instability 

Notes

Acknowledgments

This work was supported by DOE OFES grants DE-FG02-04ER54752, and DE-FG02-06ER54892. The streak camera was made available by George Rodriguez and Peter Goodwin at Los Alamos National Laboratory.

References

  1. 1.
    R.E. Siemon, W.L. Atchison, T. Awe, B.S. Bauer et al., Stability analysis and numerical simulation of a hard-core diffuse z pinch during compression with Atlas facility liner parameters. Nucl. Fusion 45, 1148 (2005)CrossRefADSGoogle Scholar
  2. 2.
    P.V. Subhash, S. Madhavan, S. Chaturvedi, Two-dimensional magnetohydrodynamic liner-on-plasma simulations for the compression phase of a magnetized target fusion system based on inverse Z pinch. Phys. Plasmas 13, 072507 (2006)CrossRefADSGoogle Scholar
  3. 3.
    S.F. Garanin, G.G. Ivanova, D.V. Karmishin, V.N. Sofronov, Diffusion of a megagauss field into a metal. J. Appl. Mech. Tech. Phys. 46, 153 (2005)ADSGoogle Scholar
  4. 4.
    M.A. Liberman, J.S. DeGroot, A. Toor, R.B. Spielman, Physics of High-Density Z-pinch Plasmas (Springer-Verlag, New York, 1999)Google Scholar
  5. 5.
    M.K. Matzen et al., Pulsed-power-driven high energy density physics and inertial confinement fusion research. Phys. Plasmas 12, 055503 (2005)CrossRefADSGoogle Scholar
  6. 6.
    H. Knoepfel, Pulsed High Magnetic Fields (North-Holland, Amsterdam, 1970)Google Scholar
  7. 7.
    S. Fuelling et al., IEEE Trans. Plasma Sci. 36, 62 (2008)Google Scholar
  8. 8.
    V. Makhin et al., IEEE Trans. Plasma Sci. (to be published)Google Scholar
  9. 9.
    T.W. Johnston, J.M. Dawson, Phys. Fluids 16, 722 (1973)CrossRefADSGoogle Scholar
  10. 10.
    A. Grinenko, Ya.E. Krasik, S. Efimov, A. Fedotov et al., Nanosecond time scale, high power electrical wire explosion in water. Phys. Plasmas 13, 042701 (2006)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • R. E. Siemon
    • 1
  • B. S. Bauer
    • 1
  • T. J. Awe
    • 1
  • M. A. Angelova
    • 1
  • S. Fuelling
    • 1
  • T. Goodrich
    • 1
  • I. R. Lindemuth
    • 1
  • V. Makhin
    • 1
  • W. L. Atchison
    • 2
  • R. J. Faehl
    • 2
  • R. E. Reinovsky
    • 2
  • P. J. Turchi
    • 2
  • J. H. Degnan
    • 3
  • E. L. Ruden
    • 3
  • M. H. Frese
    • 4
  • S. F. Garanin
    • 5
  • V. N. Mokhov
    • 5
  1. 1.University of NevadaRenoUSA
  2. 2.Los Alamos National LaboratoryLos AlamosUSA
  3. 3.Air Force Research LaboratoryAlbuquerqueUSA
  4. 4.NumerExAlbuquerqueUSA
  5. 5.VNIIEFSarovRussia

Personalised recommendations