Journal of Fusion Energy

, Volume 27, Issue 4, pp 296–300 | Cite as

Condensed Atomic Hydrogen as a Possible Target in Inertial Confinement Fusion (ICF)

  • Shahriar Badiei
  • Leif Holmlid
Original Paper


H atom Rydberg matter (RM) in excitation state n = 1 is concluded to be a form of metallic hydrogen [Badiei S, Holmlid L (2004) J Phys Condens Matter 16:7017]. This material can be produced at low pressure. This condensed form of hydrogen may be very useful as a dense hydrogen inertial confinement fusion (ICF) target, being almost metallic and ten times denser than solid (frozen) diatomic hydrogen used at present. Coulomb explosions and plasma formation are initiated in condensed atomic hydrogen even by relatively weak nanosecond pulsed lasers. The protons emitted with high directivity in these explosions are energetic, corresponding to T = 105 K, and they may be utilized to give strong compression of the material. The fastest protons observed at up to 1 keV indicate a compression considerably higher than that required for “fast ignition” fusion.


Inertial confinement fusion ICF Condensed atomic hydrogen Dense hydrogen Fusion target 


  1. 1.
    É.A. Manykin, M.I. Ozhovan, P.P. Poluéktov, Transition of an excited gas to a metallic state. Sov. Phys. Tech. Phys. Lett. 6, 95 (1980)Google Scholar
  2. 2.
    É.A. Manykin, M.I. Ozhovan, P.P. Poluéktov, Condensed states of excited cesium atoms. Sov. Phys. JETP 75, 440–445 (1992)Google Scholar
  3. 3.
    L. Holmlid, Classical energy calculations with electron correlation of condensed excited states—Rydberg matter. Chem. Phys. 237, 11–19 (1998)CrossRefADSGoogle Scholar
  4. 4.
    S. Badiei, L. Holmlid, Lowest state n = 1 of H atom Rydberg matter: many eV energy release in Coulomb explosions. Phys. Lett. A. 327, 186–191 (2004)CrossRefADSGoogle Scholar
  5. 5.
    S. Badiei, L. Holmlid, Experimental observation of an atomic hydrogen material with H–H bond distance of 150 pm suggesting metallic hydrogen. J. Phys.: Condens. Matter. 16, 7017–7023 (2004)CrossRefADSGoogle Scholar
  6. 6.
    S. Badiei, L. Holmlid, Experimental studies of fast fragments of H Rydberg matter. J. Phys. B: At. Mol. Opt. Phys. 39, 4191–4212 (2006)CrossRefADSGoogle Scholar
  7. 7.
    S. Badiei, L. Holmlid, Neutral Rydberg matter clusters from K: extreme cooling of translational degrees of freedom observed by neutral time-of-flight. Chem. Phys. 282, 137–146 (2002)CrossRefADSGoogle Scholar
  8. 8.
    H. Åkesson, S. Badiei, L. Holmlid, Angular variation of time-of-flight of neutral clusters released from Rydberg matter: primary and secondary Coulomb explosion processes. Chem. Phys. 321, 215–222 (2006)CrossRefADSGoogle Scholar
  9. 9.
    J. Wang, L. Holmlid, Rydberg matter clusters of hydrogen (H2)N* with well defined kinetic energy release observed by neutral time-of-flight. Chem. Phys. 277, 201–210 (2002)CrossRefGoogle Scholar
  10. 10.
    I. Mourachko, W. Li, T.F. Gallagher, Controlled many-body interactions in a frozen Rydberg gas. Phys. Rev. A. 70, 031401 (2004)CrossRefADSGoogle Scholar
  11. 11.
    W.R. Anderson, M.P. Robinson, J.D.D. Martin, T.F. Gallagher, Dephasing of resonant energy transfer in a cold Rydberg gas. Phys. Rev. A. 65, 063404 (2002)CrossRefADSGoogle Scholar
  12. 12.
    J-.H. Choi, B. Knuffman, T. Cubel Liebisch, A. Reinhard, G. Raithel, Cold Rydberg atoms. Adv. At. Molec. Opt. Phys. 54, 132–203 (2006)Google Scholar
  13. 13.
    V.I. Yarygin, V.N. Sidel´nikov, I.I. Kasikov, V.S. Mironov, S.M. Tulin, Experimental study on the possibility of formation of a condensate of excited states in a substance (Rydberg matter). JETP Lett. 77, 280–284 (2003)CrossRefADSGoogle Scholar
  14. 14.
    S. Badiei, L. Holmlid, Atomic hydrogen in condensed form produced by a catalytic process: a future energy-rich fuel? Energy Fuels 19, 2235–2239 (2005)CrossRefGoogle Scholar
  15. 15.
    K. Engvall, A. Kotarba, L. Holmlid, Emission of excited potassium species from an industrial iron catalyst for ammonia synthesis. Catal. Lett. 26, 101–107 (1994)CrossRefGoogle Scholar
  16. 16.
    J. Wang, L. Holmlid, Ion KN+ time-of-flight angular distributions for K beam scattering and cluster formation at graphite surfaces. Surf. Sci. 425, 81–89 (1999)CrossRefADSGoogle Scholar
  17. 17.
    A. Kotarba, K. Engvall, J.B.C. Pettersson, M. Svanberg, L. Holmlid, Angular resolved neutral desorption of potassium promoter from surfaces of iron catalysts. Surf. Sci. 342, 327–340 (1995)CrossRefADSGoogle Scholar
  18. 18.
    S. Badiei, L. Holmlid, Laser initiated detonation in Rydberg matter with a fast propagating shock wave, releasing protons with keV kinetic energy. Phys. Lett. A. 344, 265–270 (2005)MATHCrossRefADSGoogle Scholar
  19. 19.
    F. Olofson, S. Badiei, L. Holmlid, Adsorbed water molecules on a K-promoted catalyst surface studied by stimulated micro-Raman spectroscopy. Langmuir 19, 5756–5762 (2003)CrossRefGoogle Scholar
  20. 20.
    A. Kotarba, J. Dmytrzyk, U. Narkiewicz, A. Baranski, Sulfur poisoning of iron ammonia catalyst probed by potassium desorption. React. Kin. Catal. Lett. 74, 143–149 (2001)CrossRefGoogle Scholar
  21. 21.
    A. Kotarba, A. Baranski, S. Hodorowicz, J. Sokolowski, A. Szytula, L. Holmlid, Stability and excitation of potassium promoter in iron catalysts—the role of KFeO2 and KAlO2 phases. Catal. Lett. 67, 129–134 (2000)CrossRefGoogle Scholar
  22. 22.
    A. Kotarba, G. Adamski, Z. Sojka, S. Witkowski, G. Djega-Mariadassou, Potassium at catalytic surfaces—stability, electronic promotion and excitation. Stud. Surf. Sci. Catal. (International Congress on Catalysis, 2000, Pt A) 130A, 485–490 (2000)Google Scholar
  23. 23.
    L. Holmlid, Precision bond lengths for Rydberg Matter clusters KN (N = 19, 37, 61 and 91) in excitation levels n = 4–8 from rotational radio-frequency emission spectra. physics/0607193Google Scholar
  24. 24.
    S. Badiei, L. Holmlid, Stimulated emission in Rydberg matter—a thermal ultra-broadband tunable laser. Chem. Phys. Lett. 376, 812–817 (2003)CrossRefADSGoogle Scholar
  25. 25.
    L. Holmlid, Optical stimulated emission transitions in Rydberg matter observed in the range 800–14000 nm. J. Phys. B: At. Mol. Opt. Phys. 37, 357–374 (2004)CrossRefADSGoogle Scholar
  26. 26.
    S. Badiei, L. Holmlid, The Rydberg matter laser: excitation, delays and mode effects in the laser cavity medium. Appl. Phys. B. 81, 549–559 (2005)CrossRefADSGoogle Scholar
  27. 27.
    L. Holmlid, Precision bond lengths for Rydberg matter clusters K19 in excitation levels n = 4, 5 and 6 from rotational radio-frequency emission spectra. Mol. Phys. 105, 933–939 (2007)Google Scholar
  28. 28.
    W.T. Silfvast, Laser fundamentals (Cambridge University Press, New York, 1996)Google Scholar
  29. 29.
    J.P. Perdew, H.Q. Tran, E.D. Smith, Stabilized jellium: structureless pseudopotential model for the cohesive and surface properties of metals. Phys. Rev. B. 42, 11627–11636 (1990)CrossRefADSGoogle Scholar
  30. 30.
    R. Betti, A.A. Solodov, J.A. Delettrez, C. Zhou, Gain curves for direct-drive fast ignition at densities around 300 g/cc. Phys. Plasmas. 13, 100703 (2006)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Atmospheric Science, Department of ChemistryGöteborg UniversityGoteborgSweden

Personalised recommendations