Advertisement

Journal of Fusion Energy

, Volume 27, Issue 1–2, pp 36–43 | Cite as

Extended MHD Modelling with the Ten-Moment Equations

  • Ammar H. Hakim
Original Paper

Abstract

High-order moment fluid equations for simulation of plasmas are presented. The ten-moment equations are a two-fluid model in which time dependent equations are used to advance the pressure tensor. With the inclusion of the full pressure tensor Finite Larmor Radius (FLR) effects are captured. Further, Hall-effects are captured correctly by including the full electron momentum equation. Hall and FLR effects are important to understand stability of compact toroids like Field Reversed Configurations (FRCs) and also to detailed understanding of small scale instabilities in current carrying plasmas. The effects of collisions are discussed. Solutions to a Riemann problem for the ten-moment equations are presented. The ten-moment equations show complex dispersive solutions which come about from the source terms. The model is validated with the GEM fast magnetic reconnection challenge problem.

Keywords

Magnetohydrodynamics (MHD) Moment equations Magnetic reconnection Ten-moment equations Two-fluid physics Hall effects Finite-Larmor Radius effects 

References

  1. 1.
    J. Birn, M. Hesse, J. Geophys. Res. 106(A3), 3737 (2001)CrossRefGoogle Scholar
  2. 2.
    M. Brio, C.C. Wu, J. Comput. Phys. 75, 400–422 (1988)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    J. Birn et al., J. Geophys. Res. 106, 3715 (2001)CrossRefGoogle Scholar
  4. 4.
    J.P. Friedberg, Ideal Magnetohydrodynamics. (Plenum Press, 1987)Google Scholar
  5. 5.
    A. Hakim, J. Loverich, U. Shumlak, J. Comput. Phys. 219, 418–442 (2006)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    M. Hesse, J. Birn, M. Kuznetsova, J. Geophys. Res. 106(A3), 3721 (2001)CrossRefGoogle Scholar
  7. 7.
    J.-Y. Ji, E.D. Held, Phys. Plasma. 13, 102103 (2006)CrossRefGoogle Scholar
  8. 8.
    M.M. Kuznetsova, M. Hesse, D. Winske, J. Geophys. Res. 106(A3), 3799 (2001)CrossRefGoogle Scholar
  9. 9.
    Z.W. Ma, A. Bhattacharjee, J. Geophys. Res. 106(A3), 3773 (2001)CrossRefGoogle Scholar
  10. 10.
    A. Otto, J. Geophys. Res. 106(A3), 3751 (2001)CrossRefGoogle Scholar
  11. 11.
    P.L. Prichette, J. Geophys. Res. 106(A3), 3783 (2001)CrossRefGoogle Scholar
  12. 12.
    P. Eric, F. Terry, Magnetic Reconnection. Cambridge University Press (2000)Google Scholar
  13. 13.
    M.A. Shay, J.F. Drake, B.N. Rogers, R.E. Denton, J. Geophys. Res. 106(A3), 3759 (2001)CrossRefGoogle Scholar
  14. 14.
    U. Shumlak, J. Loverich, J. Comput. Phys. 187, 620–638 (2003)MATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Tech-X CorporationBoulderUSA

Personalised recommendations