Advertisement

Journal of Fusion Energy

, Volume 27, Issue 1–2, pp 119–122 | Cite as

Effects of Sputtering of and Radiation by Aluminum on Magnetized Target Fusion Plasmas

  • Peter H. Stoltz
  • Brian Granger
  • Ammar Hakim
  • Scott W. Sides
  • Seth A. Veitzer
Original Paper
  • 47 Downloads

Abstract

We estimate numerically the rate of radiation by aluminum impurities for parameters relevant to magnetized target fusion (MTF) plasmas. We demonstrate that the coronal equilibrium is appropriate for expected MTF plasma parameters. Using the coronal equilibrium, we estimate the power radiated per impurity ion is 0.25–0.5 × 10−16 MW for temperatures and densities relevant to present plasma parameters taken from the FRX-L experiment at Los Alamos National Laboratory and is approximately 75.0 × 10−16 MW for temperatures and densities relevant to anticipated MTF plasmas. We calculate the sputtering rate of aluminum by thermal deuterium and tritium plasma ions is a few percent assuming an impact angle of 45°. Finally, we estimate that with aluminum impurity levels of a few percent, the impurity radiation power density would be approximately 25 kW/cm3 for FRX-L conditions and 2.5 GW/cm3 for anticipated conditions in a MTF plasma. While we have assumed a sputtering model of impurity generation, the results for the power density apply for impurity levels of a few percent, regardless of the generation mechanism.

Keywords

Sputtering Radiation Magnetized target fusion Coronal model 

Notes

Acknowledgements

We thank Roger Vesey of Sandia National Laboratories for discussions about the mechanisms for impurity generation. This work was funded by the Department of Energy under Small Business Innovation Research Contract No. DE-FG02-03ER83797.

Reference

  1. 1.
    T.P. Intrator, J.Y. Park, J.H. Degnan, et al., IEEE Trans. Plasma Sci. 32(1), 152 (2004)CrossRefGoogle Scholar
  2. 2.
    D. Mosher, Phys. Rev. A 10(6), 2330 (1974)CrossRefGoogle Scholar
  3. 3.
    J. Chittenden, S.V. Lebedev, A.R. Bell, R. Aliaga-Rossel, S.N. Bland, M.G. Haines, Phys. Rev. Lett. 83(1), 100–103 (1999)CrossRefGoogle Scholar
  4. 4.
    E.P. Yu, B.V. Oliver, D.B. Sinars, T.A. Mehlhorn, M.E. Cuneo, P.V. Sasorov, M.G. Haines, S.V. Lebedev, Phys. Plasmas 14, 022705 (2007)CrossRefGoogle Scholar
  5. 5.
    P. Sigmund, Phys. Rev. 184, 383 (1969)CrossRefGoogle Scholar
  6. 6.
    Y. Yamamura, H. Tawara, At. Data Nuclear Data Tables 62, 149 (1996)CrossRefGoogle Scholar
  7. 7.
    P.H. Stoltz, J.P. Verboncoeur, R.H. Cohen, A.W. Molvik, J.-L. Vay, S.A. Veitzer, Phys. Plasmas 13, 056702 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Peter H. Stoltz
    • 1
  • Brian Granger
    • 1
  • Ammar Hakim
    • 1
  • Scott W. Sides
    • 1
  • Seth A. Veitzer
    • 1
  1. 1.Tech-X CorporationBoulderUSA

Personalised recommendations