Advertisement

Journal of Fusion Energy

, Volume 26, Issue 1–2, pp 103–107 | Cite as

Confinement of Strongly Anisotropic Hot-ion Plasma in a Compact Mirror

  • A. V. Anikeev
  • P. A. Bagryansky
  • A. A. Ivanov
  • A. A. Lizunov
  • S. V. Murakhtin
  • V. V. Prikhodko
  • A. L. Solomakhin
  • K. Noack
OriginalPaper

Abstract

The paper presents the results of recent study of anisotropic plasma with thermonuclear ions confined in the axially symmetric Gas Dynamic Trap (GDT) mirror. Anisotropic ions are produced by the perpendicular injection of two focused 18 keV neutral beams in the small mirror section attached to the GDT central cell. We observed build-up of density of anisotropic ions up to approximately 1013cm−3 with the localized spatial profile and the mean energy of 7 keV. The average fast ion density three times exceeded the background plasma density. Fast ion accumulation is accompanied by the decrease of the plasma flux from the central cell recorded outside the mirror, that was qualified as a potential barrier development causing confinement improvement. Analysis of measurement results compared with estimates of plasma parameters in the compact mirror allows to scale to the experiments with next generation neutral beams with increased power and pulse duration.

Keywords

Compact mirror anisotropic ions 

Notes

Acknowledgments

We thank Alexander von Humboldt Foundation institutional partnership grant V-Fokoop-RUS/1062893 for the partial support of this work. This work was also partially supported by the Civilian Research and Development Foundation (CRDF) grant RP1-2553-NO-03 and by the Lavrentiev grant #65 of the Siberian Branch of Russian Academy of Sciences.

References

  1. 1.
    Bagryansky P. A., Ivanov A. A., Kruglyakov E. P., et al., (2004) Fusion Eng. Design 70:13–33CrossRefGoogle Scholar
  2. 2.
    A. Abdrashitov, G. Abdrashitov, A. Anikeev, et. al., Trans. Fusion Sci. Technol., 47, No. 1T, 27–34 (2005)Google Scholar
  3. 3.
    A. A. Ivanov, A. V. Anikeev, and P. A. Bagryansky, Phys. Rev. Lett., 90(10), 105002 (2003)Google Scholar
  4. 4.
    Maximov V. V., Anikeev A. V., Bagryansky P. A. et al., (2000) Nuclear Fusion 40(4):753–765CrossRefGoogle Scholar
  5. 5.
    Anikeev A. V., Bagryansky P. A., Ivanov A. A., et al., (2004) Nuclear Fusion 44(4):542–547CrossRefGoogle Scholar
  6. 6.
    A. Ivanov, et al., Trans. Fusion Technol., 35, No. 1T, 107–111 (1999)Google Scholar
  7. 7.
    K. Noack, et al., Trans. Fusion Sci. Technol., 43, No. 1T, 78–82 (2002)Google Scholar
  8. 8.
    V. V. Prikhod’ko, A. V. Anikeev, P. A. Bagryanskii, et al., Plasma Phys. Reports, 31(11), 899–907 (2005)Google Scholar
  9. 9.
    Bagryansky P. A., Den Hartog D. J., Fiksel G. et al., (2003) Rev. Sci. Instr. 74(3):1592CrossRefGoogle Scholar
  10. 10.
    Bagryansky P. A., Khilchenko A. D., Lizunov A. A., et al., (2005) Trans. Fusion Sci. Technol. 47:327Google Scholar
  11. 11.
    Post R. F., Rosenbluth M. N. (1966) Phys. Fluids 9(4):730CrossRefGoogle Scholar
  12. 12.
    Baldwin D. E., Berk H. L., Pearlstain L. D. (1976) Phys. Rev. Lett. 36(17):1051CrossRefGoogle Scholar
  13. 13.
    Coensgen F. H., Cummins W. F., Logan B. G. et al., (1975) Phys. Rev. Lett. 35(22):1501CrossRefGoogle Scholar
  14. 14.
    Watson D. C. (1980) Fhys. Fluids 23(12):2485CrossRefGoogle Scholar
  15. 15.
    Casper T. A., Smith G. R. (1982) Phys. Rev. Lett. 48:1015CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  • A. V. Anikeev
    • 1
  • P. A. Bagryansky
    • 1
  • A. A. Ivanov
    • 1
  • A. A. Lizunov
    • 1
  • S. V. Murakhtin
    • 1
  • V. V. Prikhodko
    • 1
  • A. L. Solomakhin
    • 1
  • K. Noack
    • 2
  1. 1.Budker Institute of Nuclear PhysicsNovosibirskRussia
  2. 2.Forschungszenrum Dresden-Rossendorf e.V.DresdenGermany

Personalised recommendations