Serotoninergic Mechanism in the Central Link of the Shadow Reflex in Lymnaea stagnalis L.

  • E. I. Samarova
  • V. V. Zhukov
  • K. A. Sudoplatov
Comparative and Ontogenic Physiology


The study was performed on effects of serotonin and its antagonists (mianserin, propranolol, and metergoline) on efferent electrical activity in nerves cervicalis superior, cervicalis inferior, and columellaris innervating muscles withdrawing body of Lymnaea stagnalis into the shell. Serotonin had a dual effect on the off-reactions caused by rhythmical light stimulation of mollusc skin. The number of responses to series of stimuli increased at serotonin concentrations of about 10−8-10−7 M and decreased at its higher concentrations. In many cases, serotonin antagonists also had a dual effect depending on their concentration. All studied substances slightly affected duration and latent period of individual off-responses. Serotoninergic regulation is suggested to participate in central chains of the pond snail defensive shadow reflex.


Serotonin Propranolol Latent Period Electrical Activity Mianserin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sakharov, D.A., Integrative Function of Serotonin Common to Distantly Related Invertebrate Animals, The Early Brain, Gustafsson, M. and Reuter, M., Eds, Abo: Akad., 1990, pp. 73–87.Google Scholar
  2. 2.
    Khabarova, M.Yu., Behavioral Analysis of the Serotonin-Exhausting Effect of Chlorpromazine, Cand. Sci. Dissertation, Moscow, 1998.Google Scholar
  3. 3.
    Cook, A., The Withdrawal Response a Freshwater Snail Lymnaea stagnalis, J. Exp. Biol., 1975, vol. 62, pp. 783–796.Google Scholar
  4. 4.
    Ferguson, G.P. and Benjamin, P.R., The Whole-Body Withdrawal Response of Lymnaea stagnalis. I. Identification of Central Motoneurons and Muscles, J. Exp. Biol., 1991, vol. 158, pp. 63–95.PubMedGoogle Scholar
  5. 5.
    Foeh, H., Der Schattenreflex bei Helix pomatia nebst Bemerkungen uber den Schattenreflex bei Mytilis edulis, Limnaea stagnalis und Testudo ibera, Zool. Jb.(Allg. Zool), 1932, vol. 52, pp. 1–78.Google Scholar
  6. 6.
    Stoll, J.C., Sensory Systems Involved in the Shadow Response of Lymnaea stagnalis (L.) as Studied with the Use of Habituation Phenomena, Proc. Kon. Ned. Akad. Wetensch., 1972, vol. 75C, pp. 342–351.Google Scholar
  7. 7.
    Zhukov, V.V. and Arkhipova, T.A., Effect of Serotonin on Dynamics of Changes in the Shadow Reflex in Lymnaea stagnalis during Rhythmic Stimulation, Zh. Evol. Biokhim. Fiziol., 2001, vol. 37, pp. 278–285.PubMedGoogle Scholar
  8. 8.
    Zhukov, V.V. and Kononenko, N.L., Possible Participation of Serotonin in Peripheral Part of Defense Reflex of Mollusc Lymnaea stagnalis, Zh. Evol. Biokhim. Fiziol., 2002, vol. 38, pp. 225–231.PubMedGoogle Scholar
  9. 9.
    Stoll, J.C., Extraocular Photoreception in Lymnaea stagnalis L., Neurobiology of Invertebrates. Gastropod Brain, Tihany 1975, Akad. Kiado, 1976, vol. 4, pp. 487–495.Google Scholar
  10. 10.
    Stoll, J.C., Sloep, L., Duivenboden, Y., and van der Wonde, H., Light Sensitivity in the Pulmonate Gastropod Lymnaea stagnalis. Peripherally Located Shadow Receptors, Proc. Kon. Ned. Acad. Wetensch., 1976, vol. 79C, pp. 510–516.Google Scholar
  11. 11.
    Sudoplatov, K.A. and Zhukov, V.V., Electrical Responses of the Mollusc Lymnea stagnalis Peripheral Nerves to the Skin Surface Photostimulation, Zh. Evol. Biokhim. Fiziol., 1999, vol. 35, pp. 274–280.Google Scholar
  12. 12.
    Elo, J.E., Das Nervensystem von Lymnea stagnalis (L.) Lam, Ann. Zool. Soc. Zool. Bot. Fern Vanamo, 1938, vol. 6, no.4, pp. 1–40.Google Scholar
  13. 13.
    Lakin, G.F., Biometriya (The Biometry), Moscow, 1990.Google Scholar
  14. 14.
    Zhukov, V.V. and Korol, E.V., Study of the Shadow Reflex in the Gastropod Lymnea stagnalis, Zh. Evol. Biokhim. Fiziol., 1994, vol. 30, pp. 198–205.Google Scholar
  15. 15.
    Pavlova, G.A., Serotonin Effect on Locomotion in the Pulmonate Snail Helix lucorum, Zh. Evol. Biokhim. Fiziol., 1996, vol. 32, pp. 302–307.Google Scholar
  16. 16.
    Pavlova, G.A., Effect of Serotonin on Locomotion of the Freshwater Mollusc Lymnea stagnalis, Zh. Evol. Biokhim. Fiziol., 1997, vol. 33, pp. 599–606.Google Scholar
  17. 17.
    Pavlova, G.A., Effects of Serotonin, Dopamine, and Ergometrine on Locomotion in the Pulmonate Mollusc Helix lucorum, J. Exp. Biol., 2001, vol. 204, pp. 1625–1633.PubMedGoogle Scholar
  18. 18.
    Tsyganov, V.V., Neuronal Correlatives of the Serotonin-Dependent Motor Behavior of Snail Lymnea stagnalis, Cand. Sci. Dissertation, Moscow, 2001.Google Scholar
  19. 19.
    Kemenes, G., Benjamin, P.R., and Hiripi, L., 5,6-Dihydroxytryptamine-Induced Changes in the Serotonergic Modulation of Feeding in Lymnaea, Symp. Biol. Hung. Budapest: Akad. Kiado, 1988, vol. 36, pp. 415–431.Google Scholar
  20. 20.
    Benjamin, P.R., Staras, K., and Kemenes, G., A System Approach to the Cellular Analysis of Associative Learning in the Pond Snail Lymnaea, Learn. Mem., 2000, vol. 7, pp. 124–131.CrossRefPubMedGoogle Scholar
  21. 21.
    Yeoman, M.S., Kemenes, G., Benjamin, P.R., and Elliott, C.J., Modulatory Role for the Serotonergic Cerebral Giant Cells in the Feeding System of the Snail, Lymnaea. II. Photoinactivation, J. Neurophysiol., 1994, vol. 72, pp. 1372–1382.PubMedGoogle Scholar
  22. 22.
    Tsyganov, V.V., Coordination of the Activity of Monoaminergic Pedal Neurons in Fresh Water Snails, Ross. Fiziol. Zh., 2000, vol. 86, pp. 369–378.Google Scholar
  23. 23.
    de Lange, R.P., de Boer, P.A., ter Maat, A., Tensen, C.P., and van Minnen, J., Transmitter Identification in Neurons Involved in Male Copulation Behavior in Lymnaea stagnalis, J. Comp. Neurol., 1998, vol. 395, pp. 440–449.CrossRefPubMedGoogle Scholar
  24. 24.
    Panchin, Y.V., Arshavsky, Y.I., Deliagina, T.G., Orlovsky, G.N., Popova, L.B., and Selverston, A.I., Control of Locomotion in the Marine Mollusc Clione limacina. XI. Effects of Serotonin, Exp. Brain Res., 1996, vol. 109, pp. 361–365.CrossRefPubMedGoogle Scholar
  25. 25.
    Syed, N.I., Harrison, D., and Winlow, W., Locomotion in Lymnea. Role of Serotonergic Neurons Controlling the Pedal Cilia, Symp. Biol. Hung., 1998, vol. 36, pp. 387–399.Google Scholar
  26. 26.
    Syed, N.I. and Winlow, W., Morphology and Electrophysiology of Neurons Innervating the Ciliated Locomotor Epithelium in Lymnaea stagnalis, Comp. Biochem. Physiol., 1989, vol. 93A, pp. 633–644.CrossRefGoogle Scholar
  27. 27.
    McKenzie, J.D., Caunce, M., Hetherington, M.S., and Winlow, W., Serotonergic Innervation of the Foot of the Pond Snail Lymnaea stagnalis (L.), J. Neurocytol., 1998, vol. 27, pp. 459–470.CrossRefPubMedGoogle Scholar
  28. 28.
    Winlow, W. and Haydon, P.G., A Behavioral and Neuronal Analysis of the Locomotory System of Lymnea stagnalis, Comp. Biochem. Physiol., 1986, vol. 83A, pp. 13–21.CrossRefGoogle Scholar
  29. 29.
    Kyriakides, M., McCrohan, C.R., Slade, C.T., Syed, N.I., and Winlow, W., The Morphology and Electrophysiology of the Neurones of the Paired Pedal Ganglia of Lymnaea stagnalis (L.), Comp. Biochem. Physiol., 1989, vol. 93A, pp. 861–876.CrossRefGoogle Scholar
  30. 30.
    Chistopolskii, I.A. and Sakharov, D.A., Non-Synaptic Integration of Neuronal Cell Bodies in the Snail Central Nervous System, Ross. Fiziol. Zh., 2001, vol. 87, pp. 1540–1547.Google Scholar
  31. 31.
    Ferguson, G.P. and Benjamin, P.R., The Whole-Body Withdrawal Response of Lymnaea Stagnalis. II. Activation of Central Motoneurones and Muscles by Sensory Input, J. Exp. Biol., 1991, vol. 158, pp. 97–116.PubMedGoogle Scholar
  32. 32.
    Syed, N.I. and Winlow, W., Coordination of Locomotor and Cardiorespiratory Nnetworks of Lymnaea stagnalis by a Pair of Identified Interneurones, J. Exp. Biol., 1991, vol. 158, pp. 37–62.PubMedGoogle Scholar
  33. 33.
    Walcourt-Ambakederemo, A. and Winlow, W., 5-HT Receptors on Identified Lymnaea neurones in Culture. Pharmacological Characterization of 5-HT1A Receptors, Comp. Biochem. Physiol., 1994, vol. 107C, pp. 129–141.Google Scholar
  34. 34.
    Walcourt-Ambakederemo, A. and Winlow, W., 5-HT Receptors on Identified Lymnaea neurones in Culture: Pharmacological Characterization of 5-HT2 Receptors, Gen. Pharmacol., 1994, vol. 25, pp. 1079–1092.PubMedGoogle Scholar
  35. 35.
    Walcourt-Ambakederemo, A. and Winlow, W., 5-HT Receptors on Identified Lymnaea Neurones in Culture: Pharmacological Characterization of 5-HT3 Receptors, Gen. Pharmacol., 1995, vol. 26, pp. 553–561.PubMedGoogle Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2005

Authors and Affiliations

  • E. I. Samarova
    • 1
  • V. V. Zhukov
    • 1
  • K. A. Sudoplatov
    • 1
  1. 1.Bioecology FacultyState UniversityKaliningradRussia

Personalised recommendations