Advertisement

The role of the mushroom bodies and of the central complex of Drosophila melanogaster brain in the organization of courtship behavior and communicative sound production

  • A. V. Popov
  • A. I. Peresleni
  • E. V. Savvateeva-Popova
  • R. Wolf
  • M. Heisenberg
Article

Abstract

The role of the mushroom bodies and of the central complex of Drosophila melanogaster brain in the control of courtship behavior and sound production was studied by comparative analysis of courtship characteristics and singing parameters in wild type males (Canton S and Berlin), in Berlin males treated with hydroxyurea (HU) during development and thus devoid of the mushroom bodies (chemical ablation of the mushroom bodies) and in males from three mutant strains with anatomical defects in different parts of the central complex. It was shown that the mushroom bodies were practically not involved in this function, whereas the central complex plays a very important role in the organization of courtship behavior, in the control of accuracy of male following movements during the pursuit of a female, in the control of form stability of sound elements in courtship songs, in the control of rhythmic structure of courtship songs determined by the stability of the respective pacemakers and in setting up a correspondence between the current behavior and the context of the external situation. The contribution of different substructures of the central body to realization of these functions is different. So, despite the thoracic “song center” in Drosophila contains all the necessary elements for the generation of normal courtship signals of all types, modulating and stabilizing influences from the highest brain centers are necessary for the choice of its operating mode corresponding to the context of the external situation and for maintenance of its stability.

Keywords

Hydroxyurea Central Complex Mushroom Body Courtship Behavior Sound Production 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Bennet-Clark, H.C. and Ewing A.W., The Love Song of the Fruit Fly, Sci. Amer., 1970, vol. 223, pp. 85–92.Google Scholar
  2. 2.
    Ewing, A.W., Functional Aspects of Drosophila Courtship, Biol. Rev., 1983, vol. 58, pp. 275–292.Google Scholar
  3. 3.
    Ewing, A.W., Arthropod Bioacoustics: Neurobiology and Behavior, N.Y.: Cornell University, 1989.Google Scholar
  4. 4.
    von Schilcher, F., The Role of Auditory Stimuli in the Courtship of Drosophila melanogaster, Anim. Behav., 1976, vol. 24, pp. 18–26.Google Scholar
  5. 5.
    von Schilcher, F., The Function of Pulse Song and Sine Song in the Courtship of Drosophila melanogaster, Anim. Behav., 1976, vol. 24, pp. 622–625.Google Scholar
  6. 6.
    Ewing, A.W., The Neuromuscular Basis of Courtship Song in Drosophila: the Role of the Direct and Axillary Wing Muscles, J. Comp. Physiol., Ser. A, 1979, vol. 130, pp. 87–93.Google Scholar
  7. 7.
    Ewing, A.W., The Role of Feedback during Singing and Flight in Drosophila melanogaster, Physiol. Entom., 1979, vol. 4, pp. 329–337.Google Scholar
  8. 8.
    von Schilcher, F., and Hall, J.C., Neural Topography of Courtship Song in Sex Mosaics of Drosophila melanogaster, J. Comp. Physiol., Ser. A, 1979, vol. 129. pp. 85–95.Google Scholar
  9. 9.
    Hall, J.C., Portions of the Central Nervous System Controlling Reproductive Behavior in Drosophila melanogaster, Behav. Genet., 1977, vol. 7, pp. 291–312.Google Scholar
  10. 10.
    Hotta, Y. and Benzer, S., Mapping of Behavior in Drosophila Mosaics, Nature, 1976, vol. 240, pp. 527–535.Google Scholar
  11. 11.
    Cricket Behavior and Neurobiology, Huber, F., Moore, Th.E., and Loher, W., Eds., Ithaca; London: Cornell Univerity, 1989.Google Scholar
  12. 12.
    Hedwig, B. and Elsner, N., Sound Production and Sound Detection in a Stridulating Acridid Grasshopper (Omocestus viridulus ), Acoustic and Vibrational Communication in Insects, Kalmring, K. and Elsner, N., Eds., Hamburg: Parey, 1985, pp. 61–72.Google Scholar
  13. 13.
    Svidersky, V.L., Osnovy neirofiziologii nasekomykh (Foundations of Insect Neurophysiology), Leningrad: Nauka, 1980.Google Scholar
  14. 14.
    Hedwig, B., On the Role in Stridulation of Plurisegmental Interneurons of the Acridid Grasshopper Omocestus viridulus L., 1. Anatomy and Physiology of Descending Cephalothoracic Interneurons, J. Comp. Physiol., Ser. A, 1986, vol. 158, pp. 413–427.Google Scholar
  15. 15.
    Fonseca, P.J. and Popov, A.V., Sound Radiation in a Cicada: the Role of Different Structures, J. Comp. Physiol., Ser. A, 1994, vol. 175, pp. 349–361.Google Scholar
  16. 16.
    de Belle, J.S. and Heisenberg, M., Associative Odor Learning in Drosophila Abolished by Chemical Ablation of Mushroom Bodies, Science, 1994, vol. 263, pp. 692–695.Google Scholar
  17. 17.
    Strauss, R. and Heisenberg, M., A Higher Control Center of Locomotor Behavior in the Drosophila Brain, J. Neurosci., 1993, vol. 13, pp. 1852–1861.Google Scholar
  18. 18.
    Martin, J.-R., Raabe, T., and Heisenberg, M., Central Complex Substructures Are Required for the Maintenance of Locomotor Activity in Drosophila melanogaster, J. Comp. Physiol., Ser. A, 1999, vol. 185, pp. 277–288.Google Scholar
  19. 19.
    Heisenberg, M., Central Brain Function in Insects: Genetic Studies on the Mushroom Bodies and Central Complex in Drosophila, Fortschr. Zool., 1994, vol. 39, pp. 61–79.Google Scholar
  20. 20.
    Popov, A.V., Sitnik, N.A., Savvateeva-Popova, E.V., Wolf, R., and Heisenberg, M., The Role of the Brain Centres in Courtship Sound Production of Drosophila melanogaster, Ross. Fiziol. Zh., 2001, vol. 87, pp. 779–794.Google Scholar
  21. 21.
    Popov, A.V., Peresleni, A.I., Ozerskii, P.V., Shchekanov, E.E., and Savvateeva-Popova, E.V., The role of the Noduli of the Brain Central Complex in the Control of Courtship Behaviour and Sound Production, Sensorn. Sist., 2002, vol. 16, pp. 297–308.Google Scholar
  22. 22.
    Popov, A.V., Peresleni, A.I., Ozerskii, P.V., Shchekanov, E.E., and Savvateeva-Popova, E.V., The Role of the Protocerebral Bridge of the Central Complex of Drosophila melanogaster Brain in the Control of Male Courtship Behaviour and Sound Production, Zh. Evol. Biokh. Fiziol., 2003, vol. 39, pp. 531–540.Google Scholar
  23. 23.
    Popov, A.V., Peresleni, A.I., Ozerskii, P.V., Shchekanov, E.E., and Savvateeva-Popova, E.V., The Fan-Shaped and Ellipsoid Bodies of the Brain Central Complex Are Involved in the Control of Courtship Behavior and Communicative Sound Production in Drosophila melanogaster Males, Ross. Fiziol. Zh., 2004, vol. 90, pp. 385–399.Google Scholar
  24. 24.
    Hanesch, U., Fischbach, K.-F., and Heisenberg, M., Neuronal Architecture of the Central Complex in Drosophila melanogaster, Cell Tissue Res., 1989, vol. 257, pp. 343–366.Google Scholar
  25. 25.
    Hirth, F., Therianos, S., Loop, T., Gehring, W.J., Reichert, H., and Furukubo-Tokunaga, K., Developmental Defects in Brain Segmentation Caused by Mutations of the Homeobox Genes Orthodenticule and Empty Spiracles in Drosophila, Neuron, 1995, vol. 15, pp. 769–778.Google Scholar
  26. 26.
    Leng, S. and Strauss, R., Impaired Step Lengths Common to Three Unrelated Drosophila Mutant Lines with Common Brain Defects Confirm the Involvement of the Protocerebral Bridge in Optimizing Walking Speed, Proceeding of the 25th Göttingen Neurobiology Conference, Elsner, N. and Wässle, H., Eds., Stuttgart: Thieme, 1997, p. 294.Google Scholar
  27. 27.
    Popov, A.V., Savvateeva-Popova, E.V., and Kamyshev, N.G., Peculiarities of Acoustic Communication in Fruit Flies Drosophila melanogaster, Sensorn. Sist., 2000, vol. 14, pp. 60–74.Google Scholar
  28. 28.
    Bennet-Clark, H.C., A Particle Velocity Microphone for the Song of Small Insects and Other Acoustic Measurements, J. Exp. Biol., 1984, vol. 108, pp. 459–463.Google Scholar
  29. 29.
    Bennet-Clark, H.C. and Ewing, A.W., Pulse Interval as a Critical Parameter in the Courtship Song of Drosophila melanogaster, Anim. Behav., 1969, vol. 17, pp. 755–759.Google Scholar
  30. 30.
    Voskresenskaya, A.K., On the Role of the Mushroom Bodies of the Supraesophageal Ganglion in Conditioned Reflexes of the Honey Bee, Dokl. Akad. Nauk USSR, 1957, vol. 112, pp. 964–967.Google Scholar
  31. 31.
    Heisenberg, M., What Do the Mushroom Bodies Do for the Insect Brain? An Introduction, Learn. Mem., 1998, vol. 5, pp. 1–10.Google Scholar
  32. 32.
    Neckameyer, W., Dopamine and Mushroom Bodies in Drosophila: Experience-Dependent and-Independent Aspects of Sexual Behavior, Learn. Mem., 1998, vol. 5, pp. 157–165.Google Scholar
  33. 33.
    Wolf, R., Wittig, T., Liu, L., Wustman, G., Eyding, D., and Heisenberg, M., Drosophila Mushroom Bodies Are Dispensable for Visual, Tactile, and Motor Learning, Learn. Mem., 1998, vol. 5, pp. 166–178.Google Scholar
  34. 34.
    Mobbs, P.G., Brain Structure, Comprehensive Insect Physiology, Biochemistry, and Pharmacology, Kerkut, G.A. and Gilbert, L.I., Eds., vol. 5, Nervous system: Structure and Motor Function, Oxford: Pergamon, 1985, pp. 299–370.Google Scholar
  35. 35.
    Strausfeld, N., A Brain Region in Insects That Supervises Walking, Progr. Brain Res., 1999, vol. 123, pp. 273–284.Google Scholar
  36. 36.
    Svidersky, V.L. and Plotnikova, S.I., Insects and Vertebrates: Analogous Structures in the Higher Integrative Centers of the Head Brain, Zh. Evol. Biokh. Fiziol., 2002, vol. 38, pp. 492–501.Google Scholar
  37. 37.
    Renn, S.C., Armstrong, J.D., Yang, M., Wang, Z., An, X., Kaiser, K., and Taghert, P.H., Genetic Analysis of the Drosophila Ellipsoid Body Neuropile: Organization and Development of the Central Complex, J. Neurobiol., 1999, vol. 41, pp. 189–207.Google Scholar
  38. 38.
    Strausfeld, N., Atlas of an Insect Brain, Berlin; Heidelberg; New York: Springer, 1976.Google Scholar
  39. 39.
    Williams, J.L.D., Anatomical Studies of the Insect Central Nervous System: A Ground-Plan of the Midbrain and an Introduction to the Central Complex in the Locust, Schistocerca gregaria (Orthoptera), J. Zool., Lond., 1975. vol. 176, pp. 67–86.Google Scholar
  40. 40.
    Homberg, U., Structure and Functions of the Central Complex in Insects, Arthropod Brain, Gupta, A.P., Ed., New York; Chichester; Brisbane; Toronto; Singapore: Wiley, 1987, pp. 347–367.Google Scholar
  41. 41.
    Homberg, U., Neuroarchitecture of the Central Complex in the Brain of the Locust Schistocerca gregaria and S. americana as Revealed by Serotonin Immunocytochemistry, J. Comp. Neurol., 1991, vol. 303, pp. 245–254.Google Scholar
  42. 42.
    Homberg, U., Vitzthum, H., Müller, M., and Binkle, U., Immunocytochemistry of GABA in the Central Complex of the Locust Schistocerca gregaria: Identification of Immunoreactive Neurons and Colocalization with Neuropeptides, J. Comp. Neurol., 1999, vol. 409, pp. 495–507.Google Scholar
  43. 43.
    Vitzthum, H., Homberg, U., and Agricola, H., Distribution of Dip-Allatostatin I-Like Immunoreactivity in the Brain of the Locust Schistocerca gregaria with Detailed Analysis of Immunostaining in the Central Complex, J. Comp. Neurol., 1996, vol. 369, pp. 419–437.Google Scholar
  44. 44.
    Vitzthum, H. and Homberg, U., Immunocytochemical Demonstration of Locustatachykinin-Related Peptides in the Central Complex of the Locust Brain, J. Comp. Neurol., 1998, vol. 390, pp. 455–469.Google Scholar
  45. 45.
    Müller, M., Homberg, U., and Kühn, A., Neuroarchitecture of the Lower Division of the Central Body in the Brain of the Locust (Schistocerca gregaria), Cell Tissue Res., 1997, vol. 288, pp. 159–176.Google Scholar
  46. 46.
    Strauss, R., Hanesch, U., Kinkelin, M., Wolf, R., and Heisenberg, M., No-Bridge of Drosophila melanogaster.Portrait of a Structural Mutant of the Central Complex, J. Neurogenet. 1992, vol. 8, pp. 125–155.Google Scholar
  47. 47.
    Ilius, M., Wolf, R., and Heisenberg, M., The Central Complex of Drosophila melanogaster Is Involved in Flight Control: Studies on Mutants and Mosaics of the Gene ellipsoid body open, J. Neurogenet., 1994, vol. 9, pp. 189–206.Google Scholar
  48. 48.
    Vitzthum, H., Müller, M., and Homberg, U., Neurons of the Central Complex of the Locust Schistocerca gregaria Are Sensitive to Polarized Light, J. Neurosci., 2002, vol. 22, pp. 1114–1125.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2004

Authors and Affiliations

  • A. V. Popov
    • 1
  • A. I. Peresleni
    • 2
  • E. V. Savvateeva-Popova
    • 2
  • R. Wolf
    • 3
  • M. Heisenberg
    • 3
  1. 1.Sechenov Institute of Evolutionary Physiology and BiochemistryRussian Academy of SciencesSt. PetersburgRussia
  2. 2.Pavlov Institute of PhysiologyRussian Academy of SciencesSt. PetersburgRussia
  3. 3.Theodor-Boveri-Institut für Biowissenschaften (Biozentrum), Lehrstuhl für GenetikWürzburgGermany

Personalised recommendations