Skip to main content
Log in

Features of Extrusion Processing of Ultrahigh Molecular Weight Polyethylene. Experiment and Theory

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

Experimental studies have been made of the permissible regimes of processing ultrahigh molecular weight polyethylene GUR 2122 with molecular mass of 4.5 million g/moles in a laboratory extruder with an auger diameter 32 mm and a ratio L/D = 20 at temperatures of 155–165oC. On the basis of rotational viscometry, the rheological properties of the melt are described. A mathematical model and a numerical method for calculating the motion of ultrahigh molecular weight polyethylene melt in the auger and in the moulding rigging are proposed. The velocity and stress fields have been determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. N. Andreeva, E. V. Veselovskaya, E. I. Nalivaiko, et al., Ultrahigh Molecular Weight High-Density Polyethylene [in Russian], Khimiya, Leningrad (1982).

    Google Scholar 

  2. K. Salovey and X. Y. Wang, Melting of ultrahigh molecular weight polyethylene, Am. Chem. Soc. Polym. Prepr., 27, No. 2, 172 (1986).

    Google Scholar 

  3. M. Kresteva, E. Nedkov, and A. Radilova, Melting of nascent and thermally treated super-high molecular weight polyethylene, Colloid Polym. Sci., No. 263, 273−279 (1985).

  4. Meiju Xie and Huilin Li, Viscosity reduction and disentanglement in ultrahigh molecular weight polyethylene melt: Effect of blending with polypropylene and poly(ethylene glycol), Eur. Polym. J., No. 43, 3480–3487 (2007).

  5. A. J. Waddon and A. Keller, A temperature window of extrudability and reduced flow resistance in high-molecular-weight polyethylene. Interpretation in terms of flow-induced mobile hexagonal phase, J. Polym. Sci., Part B: Polym. Phys., No. 28, 1063–1073 (1990).

  6. J. W. H. Kolnaar and A. Keller, A temperature window of reduced flow resistance in polyethylene with implications for melt flow rheology: 1. The basic effect and principal parameters, Polymer, No. 35, 3863–3874 (1994).

  7. J. W. H. Kolnaar and A. Keller, A temperature window of reduced flow resistance in polyethylene with implications for melt flow rheology: 2. Rheological investigations in the extrusion window, Polymer, No. 36, 821–836 (1995).

  8. J. W. H. Kolnaar and A. Keller, A temperature window of reduced flow resistance in polyethylene with implications for melt flow rheology: 3. Implications for flow instabilities and extrudate distortion, Polymer, No. 38, 1817–1833 (1997).

  9. S. N. Aristov and O. I. Skul’skij, Exact solution of the problem of flow of a polymer solution in a plane channel, J. Appl. Mech. Tech. Phys., 76, No. 3, 88–95 (2003).

    MATH  Google Scholar 

  10. S. Rastogi, L. Kurelec, and P. J. Lemstra, Chain mobility in polymer systems: On the borderline between solid and melt. Crystal size influence in phase transition and sintering of ultrahigh molecular weight polyethylene via the mobile hexagonal phase, Macromolecules, No. 31, 5022–5031 (1998).

  11. GUR 2122, PE-UHMW: www.celanese.com, http://tools.ticona.com/tools.

  12. E. V. Slavnov, A. I. Sudakov, E. V. Pepelyaeva, V. P. Korobov, and M. A. Trutnev, A Method of Determining the Dependence of the Food Value of Bioproduct on Parameters of the Physicomechanical Effect on It and Facility, RF Patent No. 2408883, G01 N 33/02, published 10.01.2011, Byull. No. 1.

  13. A. Ya. Malkin and A. I. Isaev, Rheology: Concepts, Methods, Applications [in Russian], Professiya, St. Petersburg (2007).

    Google Scholar 

  14. Yu. L. Kuznetsova, O. I. Skul′skii, and G. V. Pyshnograi, Nonlinear viscoelastic liquid flow in a plane channel under the action of a given pressure gradient, Vychisl. Mekh. Sploshn. Sred, 1, No. 2, 55−69 (2010).

    Google Scholar 

  15. J. L. Kuznetsova and O. I. Skul′skiy, Verification of mesoscopic models of viscoelastic fluids with a non-monotonic flow curve, Korea-Austr. Rheol. J., 28, No. 1, 33−40 (2016).

    Article  Google Scholar 

  16. Yu. L. Kuznetsova and O. I. Skul′skii, Nonlinear viscoelastic liquid shear flow, Vestn. Permsk. Univ. "Mat., Mekh., Inform.," No. 4 (8), 18−27 (2011).

  17. O. I. Skul′skii and Yu. L. Kuznetsova, Rheological models of polymer solutions, Sb. Nauch. Tr. Permsk. Gos. Tekh. Univ. "Mat. Modelir. Sist. Prots.," No. 14, 178−188 (2006).

  18. Y. L. Kuznetsova and O. I. Skul′skiy, Effect of macromolecular entanglement on the simple shear flow of viscoelastic fluid, Comp. Continuum Mech., 6, No. 2, 224−231 (2013).

    Article  Google Scholar 

  19. O. V. Savenkova, O. I. Skul’skiy, and Ye. V. Slavnov, Thermal modes existing in screw extruder for thermoplastic materials, Fluid Mech. Sov. Res., 16, No. 3, 128–133 (1987).

    Google Scholar 

  20. O. I. Skul′skiy, Numerical solution problems of highly concentrated rod-like macromolecules, Int. J. Polym. Mater., No. 27, 67−75 (1994).

  21. O. I. Skul′skiy, Numerical modeling of single-screw extruders, Int. Polym. Sci. Technol., 25, No. 4, 91−95 (1998).

    Google Scholar 

  22. K. Rauvendal, Polymer Extrusion [Russian translation], Professiya, St. Petersburg (2006).

    Google Scholar 

  23. O. I. Skul’skiy and Y. V. Slavnov, Moisture diffusion in extrusive processing of damp grain, Vychisl. Mekh. Sploshn. Sred, 1, No. 2, 74−81 (2008).

    Google Scholar 

  24. O. I. Skul’skiy, Quasi-three-dimensional model of polymer flows in С-shaped chamber for twin-screw extruders with closely intermeshing screws, Res. Rev. Polym., RRPL, 6, No. 4, 140−147 (2015).

    Google Scholar 

  25. Morton M. Denn, Extrusion instabilities and wall slip, Annu. Rev. Fluid Mech., 33, 265–287 (2001).

    Article  MATH  Google Scholar 

  26. O. I. Skul’skiy, A. V. Fonarev, and Yu. L. Kuznetsova, Patent Carrying Official Registration of Computer Program "FEM FLOW" under No. 2007611760 of 25.04.2007.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. I. Skul′skii.

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 91, No. 2, pp. 584–594, March–April, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Skul′skii, O.I., Slavnov, E.V. Features of Extrusion Processing of Ultrahigh Molecular Weight Polyethylene. Experiment and Theory. J Eng Phys Thermophy 91, 556–564 (2018). https://doi.org/10.1007/s10891-018-1776-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-018-1776-1

Keywords

Navigation