Nanosecond Surface Microdischarges in Multilayer Structures

  • A. E. Dubinov
  • V. A. Lyubimtseva

Multilayer structures in which nanosecond surface microdischarges are generated have been developed, fabricated, and investigated. In these structures, layers are made in the form of thin transparent films, and a plasma discharge channel is formed in thin spacings between the layers. Passage of the discharge channel from one layer into the neighboring layer is implemented via pre-fabricated microholes. Images of microdischarges were obtained which confirmed that their plasma channels are formed according to the route assigned by the holes. The route may follow a fairly complex scheme and have self-intersection points and portions in which the electrons are bound to move in opposition to the electric field. In studying the shape of channels in multilayer strictures, the authors have found a new physical effect which lies in the azimuthal self-orientation of the discharge channel as it passes from one microhole to another.


surface microdischarge plasma channel self-orientation of the channel 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. Iza, G. J. Kim, S. M. Lee, J. K. Lee, J. L. Walsh, Y. T. Zhang, and M. G. Kong, Microplasmas: sources, particle kinetics, and biomedical applications, Plasma Process. Polym., 5, No. 4, 322−344 (2008).Google Scholar
  2. 2.
    Y. B. Gianchandani, S. A. Wright, C. K. Eun, C. G. Wilson, and B. Mitra, Exploring microdischarges for portable sensing applications, Anal. Bioanal. Chem., 395, No. 3, 559−575 (2009).CrossRefGoogle Scholar
  3. 3.
    K. H. Schoenbach and K. Becker, 20 years of microplasma research: A status report, Eur. Phys. J. D, 70, No. 2, 2950 (2016).Google Scholar
  4. 4.
    G. R. Ganieva, D. I. Ziganshin, M. M. Aukhadeev, and B. A. Timerkaev, Electric microdischarges in liquids and prospects of their use in plasma chemistry, J. Eng. Phys. Thermophys., 87, No. 1, 699−703 (2014).CrossRefGoogle Scholar
  5. 5.
    S. Samukawa, M. Hori, Sh. Rauf, K. Tachibana, P. Bruggeman, G. Kroesen, J. C. Whitehead, A. B. Murphy, A. F. Gutsol, S. Starikovskaia, U. Kortshagen, J.-P. Boeuf, T. J. Sommerer, M. J. Kushner, U. Czarnetzki, and N. Mason, The 2012 Plasma Roadmap, J. Phys. D: Appl. Phys., 45, No. 25, 253001−253037 (2012).CrossRefGoogle Scholar
  6. 6.
    S. A. Wright and Y. B. Gianchandani, Controlling pressure in microsystem packages by on-chip microdischarges between thin-film titanium electrodes, J. Vac. Sci. Technol. B, 25, No. 5, 1711−1720 (2007).CrossRefGoogle Scholar
  7. 7.
    B. Mitra, B. Levey, and Y. B. Gianchandani, Hybrid arc/glow microdischarges at atmospheric pressure and their use in portable systems for liquid and gas sensing, IEEE Trans. Plasma Sci., 36, No. 4, 1913−1924 (2008).CrossRefGoogle Scholar
  8. 8.
    D.-S. Lee, O. Sakai, and K. Tachibana, Mode change observed on spatial distribution of microplasma emission in a microdischarge cell with a floating electrode, Jpn. J. Appl. Phys., 48, No. 10, 106002−106010 (2009).CrossRefGoogle Scholar
  9. 9.
    M. Lu, S.-J. Park, B. T. Cunningham, and J. G. Eden, Microcavity plasma devices and arrays fabricated by plastic-based replica molding, J. Microelectromechan. Syst., 16, No. 6, 1397−1402 (2007).CrossRefGoogle Scholar
  10. 10.
    C.-C. Hsu, J.-H. Tsai, Y.-J. Yang, Y.-C. Liao, and Y.-W. Lu, A foldable microplasma-generation device on a paper substrate, J. Microelectromechan. Syst., 21, No. 5, 1013−1015 (2012).CrossRefGoogle Scholar
  11. 11.
    Y.-J. Yang and C.-C. Hsu, A flexible paper-based microdischarge array device for maskless patterning on nonflat surfaces, J. Microelectromechan. Syst., 22, No. 2, 256−258 (2013).CrossRefGoogle Scholar
  12. 12.
    Y.-J. Yang and C.-C. Hsu, A flexible paper-based microdischarge array device: a novel route to cost-effective and simple setup microplasma generation devices, IEEE Trans. Plasma Sci., 42, No. 12, 3756−3759 (2014).CrossRefGoogle Scholar
  13. 13.
    V. V. Shatalova and A. E. Dubinov, Voids of brightness in nanosecond sliding microdischarges in narrow slot, IEEE Trans. Plasma Sci., 42, No. 10, 2644−2645 (2014).CrossRefGoogle Scholar
  14. 14.
    A. E. Dubinov and J. P. Kozhayeva, Generation of nanosecond spark microdischarges along the surface of wings of flying insects, IEEE Trans. Plasma Sci., 42, No. 3, 2049−2053 (2014).Google Scholar
  15. 15.
    J. P. Kozhayeva, V. A. Lyubimtseva, E. A. Zuimatch, and A. E. Dubinov, A novel insight on the geometry of plasma channels of nanosecond micron-size discharges on the surface of living tissues of plants, Plasma Process. Polym., 12, No. 3, 293−296 (2015).CrossRefGoogle Scholar
  16. 16.
    A. E. Dubinov, J. P. Kozhayeva, and V. A. Lyubimtseva, Simple device to study influence of nanosecond surface microdischarge plasma on biomaterials, IEEE Trans. Plasma Sci., 43, No. 9, 3224−3227 (2015).CrossRefGoogle Scholar
  17. 17.
    D. R. Reyes, M. M. Ghanem, G. M. Whitesides, and A. Manz, Glow discharge in microfluidic chips for visible analog computing, Lab on a Chip, 2, No. 2, 113−116 (2002).Google Scholar
  18. 18.
    A. E. Dubinov, A. N. Maksimov, M. S. Mironenko, N. A. Pylayev, and V. D. Selemir, Glow discharge based device for solving mazes, Phys. Plasmas, 21, No. 9, 093503−093507 (2014).CrossRefGoogle Scholar
  19. 19.
    S. Nijdam, E. Takahashi, J. Teunissen, and U. Ebert, Streamer discharges can move perpendicularly to the electric field, New J. Phys., 16, No. 10, 103038−103046 (2014).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Russian Federal Nuclear Center “All-Russian Research Institute of Experimental Physics” (RFNC-VNIIEF)SarovRussia
  2. 2.National Research Nuclear University “Moscow Engineering Physics Institute” (NRNU MEPhI)MoscowRussia
  3. 3.Sarov Physical and Technical Institute (SarFTI NRNU MEPhI)SarovRussia

Personalised recommendations