Experimental Investigation of the Thermophysical Properties of TiO2/Propylene Glycol–Water Nanofluids for Heat-Transfer Applications

  • М. Leena
  • S. Srinivasan

Nanofluids have been prepared by dispersing TiO2 nanoparticles in 70:30% (by weight) water–propylene glycol mixture. The thermal conductivity and viscosity were found experimentally at various temperatures with the volume concentrations 0.1–0.8%. The results indicate that the thermal conductivity of the nanofluids increases with the volume concentration and temperature. Similarly, the viscosity of the nanofluids increases with the volume concentration but decreases with increase in the temperature. Correlations have been proposed for estimating the thermal conductivity and viscosity of the nanofluids. The potential heat transfer benefits of their use in laminar and turbulent flow conditions has been explained.


TiO2 nanofluids thermal conductivity enhancement viscosity density volume concentration 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    U. S. Choi, Y. I. Cho, and K. E. Kasza, Degradation effects of dilute polymer solutions on turbulent friction and heat transfer behavior, J. Non-Newtonian Fluid Mech., 41, 289–307 (1992).CrossRefGoogle Scholar
  2. 2.
    U. S. Choi, D. M. France, and B. D. Knodel, Impact of advanced fluids on costs of district cooling systems, in: Proc. 83rd Ann. Int. District Heating and Cooling Association Conf., Danvers, Washington, D. C. (1992), pp. 343–359.Google Scholar
  3. 3.
    V. Bianco, O. Manca, and S. Nardini, Numerical simulation of water/nanofluid turbulent convection, Adv. Mech. Eng., 2, 1–10 (2010).CrossRefGoogle Scholar
  4. 4.
    Y. Touloukian, Thermal Conductivity: Nonmetallic Liquids and Gases (Thermophysical Properties of Matter), Springer, New York (1970).CrossRefGoogle Scholar
  5. 5.
    S. U. S. Choi and J. A. Eastman, Enhancing thermal conductivity of fluids with nanoparticles, in: Proc. ASME Int. Mechanical Engineering Congress and Exposition, San Francisco (1995), pp. 99–105.Google Scholar
  6. 6.
    X. Q. Wang and A. S. Mujumdar, Heat transfer characteristics of nanofluids: A review, Therm. Sci., 46, 1–19 (2007).CrossRefGoogle Scholar
  7. 7.
    J. A. Eastman, S. U. S. Choi, S. Li, W. Yu, and L. J. Thompson, Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles, Appl. Phys. Lett., 78, 718–720 (2001).CrossRefGoogle Scholar
  8. 8.
    K. S. Hong, T. K. Hong, and H. S. Yang, Thermal conductivity of Fe nanofluids depending on the cluster size of nanoparticles, Appl. Phys. Lett., 88, 031901–031903 (2006).CrossRefGoogle Scholar
  9. 9.
    D. Hemanth Kumar, H. E. Patel, V. R. R. Kumar, T. Pradeep, and S. K. Das, Model for heat conduction in nanofluids, Phys. Rev. Lett., 93, 144301–144304 (2004).CrossRefGoogle Scholar
  10. 10.
    S. Lee, S. U. S. Choi, S. Li, and J. A. Eastman, Measuring thermal conductivity of fluids containing oxide nanoparticles, Heat Transf., 121, 280–289 (1999).CrossRefGoogle Scholar
  11. 11.
    Y. Xuan and Q. Li, Heat transfer enhancement of nanofluids, Heat Fluid Flow, 21, 58–64 (2000).CrossRefGoogle Scholar
  12. 12.
    J. Jeong, C. Li, Y. Kwon, J. Lee, S. H. Kim, and R. Yun, Particle shape effect on the viscosity and thermal conductivity of ZnO nanofluids, Int. J. Refrig., 36, 2233–2241 (2013).CrossRefGoogle Scholar
  13. 13.
    A. Ghadimi and I. H. Metselaar, The influence of surfactant and ultrasonic processing on improvement of stability, thermal conductivity and viscosity of titania nanofluid, Exp. Therm. Fluid Sci., 51, 1–9 (2013).CrossRefGoogle Scholar
  14. 14.
    W. Duangthongsuk and S. Wongwises, Measurement of temperature-dependent thermal conductivity and viscosity of TiO2-water nanofluids, Exp. Therm. Fluid Sci., 33, 706–714 (2009).CrossRefGoogle Scholar
  15. 15.
    W. J. Tseng and C. H. Wu, Aggregation, rheology and electrophoretic packing structure of aqueous Al2O3 nanoparticle suspensions, Acta Mater., 50, 3757–3766 (2002).CrossRefGoogle Scholar
  16. 16.
    Y. He, Y. Jin, H. Chen, Y. Ding, D. Cang, and H. Lu, Heat transfer and flow behaviour of aqueous suspensions of TiO2 nanoparticles (nanofluids) flowing upward through a vertical pipe, Heat Mass Transf., 50, 2272–2281 (2007).CrossRefzbMATHGoogle Scholar
  17. 17.
    S. H. Kim, S. R. Choi, and D. Kim, Thermal conductivity of metal-oxide nanofluids: particle size dependence and effect of laser irradiation, Heat Transf., 129, 298–307 (2006).CrossRefGoogle Scholar
  18. 18.
    D. H. Yoo, K. S. Hong, and H. S. Yang, Study of thermal conductivity of nanofluids for the application of heat transfer fluids, Thermochim. Acta, 455, 66–69 (2007).CrossRefGoogle Scholar
  19. 19.
    S. A. Ibrahim and S. Sreekantan, Effect of pH on TiO2 nanoparticles via sol-gel method, in: Proc. ICXRI, 9–10 June, 2010, Aseania Resort Langkawi, Malaysia (2010), pp. 84–87.Google Scholar
  20. 20.
    K. D. Kihm, Fundamendals of energy transport in nanofluids, Annual Report, 1–42 (2003).Google Scholar
  21. 21.
    Y. Zhao, C. Li, X. Liu, F. Gu, H. Jiang, W. Shao, L. Zhang, and Y. Ge, Synthesis and optical properties of TiO2 nanoparticles, Mater. Lett., 61, 79–83 (2007).CrossRefGoogle Scholar
  22. 22.
    K. M. Reddy, S. V. Manorama, and A. Ramachandra Reddy, Bandgap studies on anatase titanium dioxide nanoparticles, Mater. Chem. Phys., 78, 239–245 (2002).CrossRefGoogle Scholar
  23. 23.
    B. C. Pak and Y. I. Cho, Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles, Exp. Heat Transf., 11, 151–170 (1999).CrossRefGoogle Scholar
  24. 24.
    Z. Haddad, C. Abid, O. Rahil, O. Margeat, W. Dachraoui, and A. Mataoui, Is it important to measure the volumetric mass density of nanofluids? Math. Phys. Electrical Comput. Eng., 8, 310–313 (2014).Google Scholar
  25. 25.
    D. A. Drew and S. L. Passman, Theory of Multicomponent Fluids, Springer, Berlin (1999).CrossRefzbMATHGoogle Scholar
  26. 26.
    A. Einstein, Eine neue Bestimmung der Moleküldimensionen, Ann. Phys., 19, 289–306 (1906).CrossRefzbMATHGoogle Scholar
  27. 27.
    H. C. Brinkman, The viscosity of concentrated suspensions and solutions, Chem. Phys., 20, 571–580 (1952).Google Scholar
  28. 28.
    G. K. Batchelor, The effect of Brownian motion on the bulk stress in a suspension of spherical particles, Fluid Mech., 83, 97–117 (1977).MathSciNetCrossRefGoogle Scholar
  29. 29.
    N. Jamshidi, M. Farhadi, D. D. Ganji, and K. Sedighi, Experimental investigation on the viscosity of nanofluids, Eng. Transact. B, 25, 201–209 (2012).Google Scholar
  30. 30.
    S. M. S. Murshed, K. C. Leong, and C. Yang, Enhanced thermal conductivity of TiO2-water based nanofluids, Int. J. Therm. Sci., 44, 367–373 (2005).CrossRefGoogle Scholar
  31. 31.
    M. Jalal, H. Meisami, and M. Pouyagohar, Experimental study of CuO/water nanofluid effect on convective heat transfer of a heat sink, Sci. Res., 13, 606–611 (2013).Google Scholar
  32. 32.
    R. Prasher, D. Song, J. Wang, and P. Phelan, Measurements of nanofluid viscosity and its implications for thermal applications, Appl. Phys. Lett., 89, 133108–1331083 (2006).CrossRefGoogle Scholar
  33. 33.
    R. E. Simons, Comparing heat transfer rates of liquid coolants using the Mouromtseff number, Electron. Cool., 12, No. 2 (2006).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsPresidency College (Autonomous)ChennaiIndia

Personalised recommendations