Skip to main content
Log in

Experimental Investigation of the Thermophysical Properties of TiO2/Propylene Glycol–Water Nanofluids for Heat-Transfer Applications

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

Nanofluids have been prepared by dispersing TiO2 nanoparticles in 70:30% (by weight) water–propylene glycol mixture. The thermal conductivity and viscosity were found experimentally at various temperatures with the volume concentrations 0.1–0.8%. The results indicate that the thermal conductivity of the nanofluids increases with the volume concentration and temperature. Similarly, the viscosity of the nanofluids increases with the volume concentration but decreases with increase in the temperature. Correlations have been proposed for estimating the thermal conductivity and viscosity of the nanofluids. The potential heat transfer benefits of their use in laminar and turbulent flow conditions has been explained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. U. S. Choi, Y. I. Cho, and K. E. Kasza, Degradation effects of dilute polymer solutions on turbulent friction and heat transfer behavior, J. Non-Newtonian Fluid Mech., 41, 289–307 (1992).

    Article  Google Scholar 

  2. U. S. Choi, D. M. France, and B. D. Knodel, Impact of advanced fluids on costs of district cooling systems, in: Proc. 83rd Ann. Int. District Heating and Cooling Association Conf., Danvers, Washington, D. C. (1992), pp. 343–359.

  3. V. Bianco, O. Manca, and S. Nardini, Numerical simulation of water/nanofluid turbulent convection, Adv. Mech. Eng., 2, 1–10 (2010).

    Article  Google Scholar 

  4. Y. Touloukian, Thermal Conductivity: Nonmetallic Liquids and Gases (Thermophysical Properties of Matter), Springer, New York (1970).

    Book  Google Scholar 

  5. S. U. S. Choi and J. A. Eastman, Enhancing thermal conductivity of fluids with nanoparticles, in: Proc. ASME Int. Mechanical Engineering Congress and Exposition, San Francisco (1995), pp. 99–105.

  6. X. Q. Wang and A. S. Mujumdar, Heat transfer characteristics of nanofluids: A review, Therm. Sci., 46, 1–19 (2007).

    Article  Google Scholar 

  7. J. A. Eastman, S. U. S. Choi, S. Li, W. Yu, and L. J. Thompson, Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles, Appl. Phys. Lett., 78, 718–720 (2001).

    Article  Google Scholar 

  8. K. S. Hong, T. K. Hong, and H. S. Yang, Thermal conductivity of Fe nanofluids depending on the cluster size of nanoparticles, Appl. Phys. Lett., 88, 031901–031903 (2006).

    Article  Google Scholar 

  9. D. Hemanth Kumar, H. E. Patel, V. R. R. Kumar, T. Pradeep, and S. K. Das, Model for heat conduction in nanofluids, Phys. Rev. Lett., 93, 144301–144304 (2004).

    Article  Google Scholar 

  10. S. Lee, S. U. S. Choi, S. Li, and J. A. Eastman, Measuring thermal conductivity of fluids containing oxide nanoparticles, Heat Transf., 121, 280–289 (1999).

    Article  Google Scholar 

  11. Y. Xuan and Q. Li, Heat transfer enhancement of nanofluids, Heat Fluid Flow, 21, 58–64 (2000).

    Article  Google Scholar 

  12. J. Jeong, C. Li, Y. Kwon, J. Lee, S. H. Kim, and R. Yun, Particle shape effect on the viscosity and thermal conductivity of ZnO nanofluids, Int. J. Refrig., 36, 2233–2241 (2013).

    Article  Google Scholar 

  13. A. Ghadimi and I. H. Metselaar, The influence of surfactant and ultrasonic processing on improvement of stability, thermal conductivity and viscosity of titania nanofluid, Exp. Therm. Fluid Sci., 51, 1–9 (2013).

    Article  Google Scholar 

  14. W. Duangthongsuk and S. Wongwises, Measurement of temperature-dependent thermal conductivity and viscosity of TiO2-water nanofluids, Exp. Therm. Fluid Sci., 33, 706–714 (2009).

    Article  Google Scholar 

  15. W. J. Tseng and C. H. Wu, Aggregation, rheology and electrophoretic packing structure of aqueous Al2O3 nanoparticle suspensions, Acta Mater., 50, 3757–3766 (2002).

    Article  Google Scholar 

  16. Y. He, Y. Jin, H. Chen, Y. Ding, D. Cang, and H. Lu, Heat transfer and flow behaviour of aqueous suspensions of TiO2 nanoparticles (nanofluids) flowing upward through a vertical pipe, Heat Mass Transf., 50, 2272–2281 (2007).

    Article  MATH  Google Scholar 

  17. S. H. Kim, S. R. Choi, and D. Kim, Thermal conductivity of metal-oxide nanofluids: particle size dependence and effect of laser irradiation, Heat Transf., 129, 298–307 (2006).

    Article  Google Scholar 

  18. D. H. Yoo, K. S. Hong, and H. S. Yang, Study of thermal conductivity of nanofluids for the application of heat transfer fluids, Thermochim. Acta, 455, 66–69 (2007).

    Article  Google Scholar 

  19. S. A. Ibrahim and S. Sreekantan, Effect of pH on TiO2 nanoparticles via sol-gel method, in: Proc. ICXRI, 9–10 June, 2010, Aseania Resort Langkawi, Malaysia (2010), pp. 84–87.

  20. K. D. Kihm, Fundamendals of energy transport in nanofluids, Annual Report, 1–42 (2003).

    Google Scholar 

  21. Y. Zhao, C. Li, X. Liu, F. Gu, H. Jiang, W. Shao, L. Zhang, and Y. Ge, Synthesis and optical properties of TiO2 nanoparticles, Mater. Lett., 61, 79–83 (2007).

    Article  Google Scholar 

  22. K. M. Reddy, S. V. Manorama, and A. Ramachandra Reddy, Bandgap studies on anatase titanium dioxide nanoparticles, Mater. Chem. Phys., 78, 239–245 (2002).

    Article  Google Scholar 

  23. B. C. Pak and Y. I. Cho, Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles, Exp. Heat Transf., 11, 151–170 (1999).

    Article  Google Scholar 

  24. Z. Haddad, C. Abid, O. Rahil, O. Margeat, W. Dachraoui, and A. Mataoui, Is it important to measure the volumetric mass density of nanofluids? Math. Phys. Electrical Comput. Eng., 8, 310–313 (2014).

    Google Scholar 

  25. D. A. Drew and S. L. Passman, Theory of Multicomponent Fluids, Springer, Berlin (1999).

    Book  MATH  Google Scholar 

  26. A. Einstein, Eine neue Bestimmung der Moleküldimensionen, Ann. Phys., 19, 289–306 (1906).

    Article  MATH  Google Scholar 

  27. H. C. Brinkman, The viscosity of concentrated suspensions and solutions, Chem. Phys., 20, 571–580 (1952).

    Google Scholar 

  28. G. K. Batchelor, The effect of Brownian motion on the bulk stress in a suspension of spherical particles, Fluid Mech., 83, 97–117 (1977).

    Article  MathSciNet  Google Scholar 

  29. N. Jamshidi, M. Farhadi, D. D. Ganji, and K. Sedighi, Experimental investigation on the viscosity of nanofluids, Eng. Transact. B, 25, 201–209 (2012).

    Google Scholar 

  30. S. M. S. Murshed, K. C. Leong, and C. Yang, Enhanced thermal conductivity of TiO2-water based nanofluids, Int. J. Therm. Sci., 44, 367–373 (2005).

    Article  Google Scholar 

  31. M. Jalal, H. Meisami, and M. Pouyagohar, Experimental study of CuO/water nanofluid effect on convective heat transfer of a heat sink, Sci. Res., 13, 606–611 (2013).

    Google Scholar 

  32. R. Prasher, D. Song, J. Wang, and P. Phelan, Measurements of nanofluid viscosity and its implications for thermal applications, Appl. Phys. Lett., 89, 133108–1331083 (2006).

    Article  Google Scholar 

  33. R. E. Simons, Comparing heat transfer rates of liquid coolants using the Mouromtseff number, Electron. Cool., 12, No. 2 (2006).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to М. Leena.

Additional information

Published in Inzhenerno-Fizicheskii Zhurnal, Vol. 91, No. 2, pp. 525–533, March–April, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leena, М., Srinivasan, S. Experimental Investigation of the Thermophysical Properties of TiO2/Propylene Glycol–Water Nanofluids for Heat-Transfer Applications. J Eng Phys Thermophy 91, 498–506 (2018). https://doi.org/10.1007/s10891-018-1770-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-018-1770-7

Keywords

Navigation