Skip to main content
Log in

Numerical Simulation of the Interaction of an Air Shock Wave with a Surface Gas–Dust Layer

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

Within the framework of the one-velocity and multivelocity models of a dust-laden gas with the use of the Godunov method with a linearized Riemann solver, the problem of the interaction of a shock wave with a dust-laden gas layer located along a solid plane surface has been studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. V. Fedorov, Mixture formation in propagation of wave processes in gas suspensions, Fiz. Goreniya Vzryva, 40, No. 1, 21–37 (2004).

    Google Scholar 

  2. A. V. Fedorov, N. N. Fedorova, I. A. Fedorchenko, and V. M. Fomin, Mathematical simulation of dust rise from a surface, Prikl. Mekh. Tekh. Fiz., 46, No. 6, 113–125 (2002).

    MATH  Google Scholar 

  3. A. V. Fedorov and I. A. Fedorchenko, Calculation of dust rise behind a shock wave sliding along the layer. Verification of the model, Fiz. Goreniya Vzryva, 41, No. 3, 110–120 (2005).

    Google Scholar 

  4. A. V. Fedorov, Yu. V. Kharlamova, and T. A. Khmel′, Reflection of a shock wave in a dust cloud, Fiz. Goreniya Vzryva, 43, No. 1, 121–131 (2007).

    Google Scholar 

  5. A. V. Fedorov and T. A. Khmel′, Interaction of a shock wave with a cloud of aluminum particles in a channel, Fiz. Goreniya Vzryva, 38, No. 2, 89–98 (2002).

    Google Scholar 

  6. A. V. Fedorov and I. A. Fedorchenko, Numerical simulation of a shock wave propagation in a mixture of a gas with solid particles, Fiz. Goreniya Vzryva, 46, No. 5, 97–107 (2010).

    Google Scholar 

  7. R. I. Nigmatulin, Dynamics of Multiphase Media [in Russian], Pt. 1, Nauka, Moscow (1987).

  8. V. S. Surov, On equations of a one-velocity heterogeneous medium, J. Eng. Phys. Thermophys., 82, No. 1, 75–84 (2009).

    Article  Google Scholar 

  9. V. S. Surov, Account of interfractional heat transfer in a hyperbolic model of a one-velocity heterogeneous mixture, J. Eng. Phys. Thermophys., 90, No. 3, 575–585 (2017).

    Article  MathSciNet  Google Scholar 

  10. V. S. Surov, Hyperbolic models in the mechanics of heterogeneous media, Zh. Vychisl. Mat. Mat. Fiz., 54, No. 1, 139–149 (2014).

    MathSciNet  MATH  Google Scholar 

  11. V. S. Surov, Latent waves in heterogeneous media, J. Eng. Phys. Thermophys., 87, No. 6, 1463–1468 (2014).

    Article  Google Scholar 

  12. A. A. Gubaidullin, D. N. Dudko, and S. F. Urmancheev, Effect of air shock waves on barriers covered with a porous layer, Vychisl. Tekhnol., 6, No. 3, 7–20 (2001).

    MATH  Google Scholar 

  13. D. L. Nguyen, E. R. F. Winter, and M. Greiner, Sonic velocity in two-phase systems, Int. J. Multiphase Flow, 7, 311–320 (1981).

    Article  Google Scholar 

  14. G. B. Wallis, One-Dimensional Two-Phase Flow [Russian translation], Mir, Moscow (1972).

    Google Scholar 

  15. S.-J. Lee, K.-S. Chang, and K. Kim, Pressure wave speeds from the characteristics of two fluids, two-phase hyperbolic equation systems, Int. J. Multiphase Flow, 24, 855–866 (1998).

    Article  Google Scholar 

  16. S. K. Godunov, A. V. Zabrodin, M. Ya. Ivanov, A. N. Kraiko, and G. P Prokopov, Numerical Solution of Multidimensional and Gas-Dynamical Problems [in Russian], Nauka, Moscow (1976).

    Google Scholar 

  17. E. F. Toro, Riemann solvers with evolved initial condition, Int. J. Numer. Methods Fluids, 52, 433–453 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  18. V. S. Surov, Godunov method for calculating multicomponent heterogeneous medium flows, J. Eng. Phys. Thermophys., 87, No. 2, 367–375 (2014).

    Article  Google Scholar 

  19. V. S. Surov, On a method of approximate solution of the Riemann problem for a one-velocity of a multicomponent mixture, J. Eng. Phys. Thermophys., 83, No. 2, 373–379 (2010).

    Article  Google Scholar 

  20. V. S. Surov, Interaction of shock waves with bubble liquid droplets, Zh. Tekh. Fiz., 71, No. 6, 17–22 (2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Surov.

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 91, No. 2, pp. 393–399, March–April, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Surov, V.S. Numerical Simulation of the Interaction of an Air Shock Wave with a Surface Gas–Dust Layer. J Eng Phys Thermophy 91, 370–376 (2018). https://doi.org/10.1007/s10891-018-1758-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-018-1758-3

Keywords

Navigation