Advertisement

Modeling of the Temperature Field Recovery in the Oil Pool

  • I. L. Khabibullin
  • A. Ya. Davtetbaev
  • D. F. Mar’in
  • A. A. Khisamov
Article
  • 24 Downloads

This paper considers the problem on mathematical modeling of the temperature field recovery in the oil pool upon termination of injection of water into the pool. The problem is broken down into two stages: injection of water and temperature and pressure recovery upon termination of injection. A review of the existing mathematical models is presented, analytical solutions for a number of cases have been constructed, and a comparison of the analytical solutions of different models has been made. In the general form, the expression has been obtained that permits determining the temperature change in the oil pool upon termination of injection of water (recovery of the temperature field).

Keywords

mathematical modeling oil pool filtration temperature distribution termination of injection temperature field recovery 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    È. B. Chekaluyk, Thermodynamics of an Oil Pool [in Russian], Nedra, Moscow (1965).Google Scholar
  2. 2.
    A. Sh. Ramazanov, R. A. Valiullin, A. A. Sadretdinov, V. V. Shako V. P. Pimenov, V. N. Fedorov, and K. V. Belov, Thermal modeling for characterization of near wellbore zone and zonal allocation, SPE Russian Oil and Gas Conference and Exhibition, 26−28 October 2010, SPE 136256, Moscow (2010).Google Scholar
  3. 3.
    L. I. Rubinshtein, Temperature Fields in Oil Pools [in Russian], Nedra, Moscow (1972).Google Scholar
  4. 4.
    M. A. Pudovkin and I. K. Volkov, Boundary-Value Problems of the Mathematical Theory of Heat Conduction as Applied to Calculations of the Temperature Fields in Oil Pools under Flooding Conditions [in Russian], Izd. Kazansk. Univ., Kazan′ (1978).Google Scholar
  5. 5.
    M. G. Alishaev, M. D. Rozenberg, and E. V. Teslyuk, Nonisothermal Filtration in Development of Oil Deposits [in Russian], Nedra, Moscow (1985).Google Scholar
  6. 6.
    A. I. Filippov, P. N. Mikhailov, and N. A. Spiridonova, Barothermal effect in gases in an isolated pool, J. Eng. Phys. Thermophys., 87, No. 5, 1050–1056 (2006).CrossRefGoogle Scholar
  7. 7.
    A. I. Filippov, O. V. Akhmetova, and I. F. Kabirov, Problem on the temperature field in an anisotropic layer with sources in the presence of convection, J. Eng. Phys. Thermophys., 85, No. 4, 802–819 (2012).CrossRefGoogle Scholar
  8. 8.
    H. A. Lauwerier, The transport of heat in an oil layer caused by the injection of hot fluid, Appl. Sci. Res., Sect. A, 5, Nos. 2−3, 145−150 (1955).MathSciNetCrossRefGoogle Scholar
  9. 9.
    N. A. Avdonin, Concerning certain formulas for calculating the temperature field of an oil pool upon thermal injection, Izv. Vyssh. Ucheb. Zaved., Neft’ Gaz, No. 3, 37–41 (1964).Google Scholar
  10. 10.
    K. S. Basniev, I. N. Kochina, and V. N. Maksimov, Underground Hydromechanics [in Russian], Nedra, Moscow (1993).Google Scholar
  11. 11.
    B. M. Budak, A. A. Samarskii, and A. N. Tikhonov, Collection of Problems on Mathematical Physics [in Russian], Fizmatlit, Moscow (2004).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • I. L. Khabibullin
    • 1
  • A. Ya. Davtetbaev
    • 2
  • D. F. Mar’in
    • 1
  • A. A. Khisamov
    • 1
  1. 1.Bashkir State UniversityUfaRussia
  2. 2.OOO “RN-UfaNIPIneft’”UfaRussia

Personalised recommendations