Determination of the Temperature Dependence of Heat Capacity for Some Molecular Crystals of Nitro Compounds

  • Yu. M. Kovalev
  • V. F. Kuropatenko

An analysis of the existing approximations used for describing the dependence of heat capacity at a constant volume on the temperature of a molecular crystal has been carried out. It is shown that the considered Debye and Einstein approximations do not enable one to adequately describe the dependence of heat capacity at a constant volume on the temperature of the molecular crystals of nitro compounds. This inference requires the development of special approximations that would describe both low-frequency and high-frequency parts of the vibrational spectra of molecular crystals. This work presents a universal dependence allowing one to describe the dependence of heat capacity at a constant volume on temperature for a number of molecular crystals of nitro compounds.


equation of state molecular crystal Helmholtz energy Planck constant Boltzmann constant Debye approximation Einstein approximation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. N. Zharkov and V. A. Kalinin, Equations of State at High Temperatures and Pressures [in Russian], Nauka, Moscow (1968).Google Scholar
  2. 2.
    Yu. M. Kovalev, Equations of state and of the temperature of shock compression of crystalline explosives, Fiz. Goreniya Vzryva, 20, No. 2, 102–107 (1984).Google Scholar
  3. 3.
    Yu. M. Kovalev, Mathematical simulation of the thermal component of the equation of state of molecular crystals, Vestn. Yuzhno-Uralsk. Gos. Univ., 6, No. 1, 34−42 (2013).zbMATHGoogle Scholar
  4. 4.
    V. F. Kuropatenko, Models of the Continuous Medium Mechanics [in Russian], Izd. Chelyabinsk. Gos. Univ., Chelyabinsk (2007).Google Scholar
  5. 5.
    V. F. Kuropatenko, Equations of state in mathematical models of the mechanics and physics, Mat. Modelir., 4, No. 12, 112−136 (1992).Google Scholar
  6. 6.
    D. Stall, E. Westram, and G. Zinke, The Chemical Thermophysics of Organic Compounds [Russian translation], Mir, Moscow (1971).Google Scholar
  7. 7.
    N. B. Vargaftik, Handbook of Thermotechnical Properties of Gases and Liquids [in Russian], Nauka, Moscow (1972).Google Scholar
  8. 8.
    Tsyan Sye-sen, Physical Mechanics [Russian translation], Mir, Moscow (1965).Google Scholar
  9. 9.
    V. G. Shchetinin, Calculation of the heat capacity of organic substances in shock and detonation waves, Khim. Fiz., 18, No. 5, 90–95 (1999).Google Scholar
  10. 10.
    B. M. Dobrats and P. C. Crawford, LLNL Explosives Handbook. Properties of Chemical Explosives and Explosive Simulants, University of California, Livermore, California (1985).Google Scholar
  11. 11.
    T. R. Gibbs and A. Popolato, Last Explosive Property Data. Los Alamos Series on Dynamic Material Properties, University of California Press, Berkeley−Los Angeles−London (1980).Google Scholar
  12. 12.
    L. A. Girifalco, Statistical Physics of the Solid [Russian translation], Mir, Moscow (1975).Google Scholar
  13. 13.
    A. I. Kitaigorodskii, Molecular Crystals [in Russian], Nauka, Moscow (1971).Google Scholar
  14. 14.
    Yu. M. Kovalev and A. V. Belik, Determination of the thermal component of the equation of state of molecular crystals, Chelyabinsk. Fiz.-Mat. Zh., No. 9 (300), 5−10 (2013).Google Scholar
  15. 15.
    T. Clark, Handbook of Computational Chemistry [Russian translation], Mir, Moscow (1990).Google Scholar
  16. 16.
    N. F. Stepanov and Yu. V. Novakovskaya, Quantum chemistry today, Ross. Khim. Zh., LI, No. 5, 5–17 (2007).Google Scholar
  17. 17.
    P. J. Miller, S. Block, and G. J. Piermarini, Effect of pressure on the vibration spectra of liquid nitromethane. J. Phys. Chem., 93, 462–466 (1989).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.South-Ural State University (National Research University)ChelyabinskRussia

Personalised recommendations