Advertisement

Journal of Engineering Physics and Thermophysics

, Volume 89, Issue 5, pp 1289–1314 | Cite as

Integral Method of Boundary Characteristics in Solving the Stefan Problem: Dirichlet Condition

  • V. A. Kot
Article

The integral method of boundary characteristics is considered as applied to the solution of the Stefan problem with a Dirichlet condition. On the basis of the multiple integration of the heat-conduction equation, a sequence of identical equalities with boundary characteristics in the form of n-fold integrals of the surface temperature has been obtained. It is shown that, in the case where the temperature profile is defined by an exponential polynomial and the Stefan condition is not fulfilled at a moving interphase boundary, the accuracy of solving the Stefan problem with a Dirichlet condition by the integral method of boundary characteristics is higher by several orders of magnitude than the accuracy of solving this problem by other known approximate methods and that the solutions of the indicated problem with the use of the fourth–sixth degree polynomials on the basis of the integral method of boundary characteristics are exact in essence. This method surpasses the known numerical methods by many orders of magnitude in the accuracy of calculating the position of the interphase boundary and is approximately equal to them in the accuracy of calculating the temperature profile.

Keywords

heat-conduction equation Stefan problem Dirichlet condition moving interphase boundary approximation identical equality 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Crank, The Mathematics of Diffusion, Clarendon Press, Oxford (1975), pp.129–135.Google Scholar
  2. 2.
    J. M. Hill, One-Dimensional Stefan Problems: An Introduction, Chapman & Hall, London (1989).Google Scholar
  3. 3.
    V. Alexiades and A. D. Solomon, Mathematical Modeling of Melting and Freezing Processes, Hemisphere–Taylor & Francis, Washington (1983).Google Scholar
  4. 4.
    J. M. Chadam and H. Rasmussen, Free Boundary Problems Involving Solids, Pitman Research Notes in Mathematics Series 281, Longman, Essex (1993).Google Scholar
  5. 5.
    S. C. Gupta, The Classical Stefan Problem. Basic Concepts, Modelling and Analysis, Elsevier, Amsterdam (2003).MATHGoogle Scholar
  6. 6.
    V. J. Lunardini, Heat Transfer with Freezing and Thawing, Elsevier, London (1991).Google Scholar
  7. 7.
    D. A. Tarzia, Explicit and approximated solutions for heat and mass transfer problems with a moving interface, Adv. Topics Mass Transf., Chapter 20, InTech Open Access Publisher, Rijeka (2011), pp. 439–484. Available from: http://www.intechopen.com/articles/show/title/explicit-and-approximated-solutions-for-heat-and-mass-transfer.
  8. 8.
    Cannon J. R. The One-Dimensional Heat Equation, Addison–Wesley, Menlo Park, CA (1984).CrossRefMATHGoogle Scholar
  9. 9.
    T. R. Goodman, The heat-balance integral and its application to problems involving a change of phase, Trans. ASME, 80, 335–342 (1958).Google Scholar
  10. 10.
    T. R. Goodman, Application of integral methods to transient nonlinear heat transfer, in: T. F. Irvine and J. P. Hartnett (Eds.), Advances in Heat Transfer, Vol. 1, Academic Press, New York (1964), pp. 51–122.Google Scholar
  11. 11.
    B. Noble, Heat balance methods in melting problems, in: J. R. Ockendon and W. R. Hodgkins (Eds.), Moving Boundary Problems in Heat Flow and Diffusion, Clarendon, Oxford (1975).Google Scholar
  12. 12.
    M. C. Olguin, M. A. Medina, M. C. Sanziel, and D. A. Tarzia, Behavior of the solution of a Stefan problem by changing thermal coefficients of the substance, Appl. Math. Comput., 190, 765–780 (2007).MathSciNetMATHGoogle Scholar
  13. 13.
    G. Poots, On the application of integral methods to the solution of problems involving the solidification of liquids initially at fusion temperature, Int. J. Heat Mass Transf., 5, No. 6, 525–531 (1962).CrossRefGoogle Scholar
  14. 14.
    S. L. Mitchell and T. G. Myers, Heat balance integral method for one-dimensional finite ablation, J. Thermophys. Heat Transf., 22, No. 3, 508–514 (2008). DOI:  10.2514/1.31755.CrossRefGoogle Scholar
  15. 15.
    S. L. Mitchell and T. G. Myers, Application of heat balance integral methods to one-dimensional phase change problems, Int. J. Differ. Equ., 2012, Article ID 187902 (2012). DOI: 10.1155/2012/187902.
  16. 16.
    E. Case and J. Taysch, An integral equation method for spherical Stefan problems, Appl. Math. Comput., 218, No. 23, 11451–11460 (2012).MathSciNetMATHGoogle Scholar
  17. 17.
    S. L. Mitchell and T. G. Myers, Application of standard and refined heat balance integral methods to one-dimensional Stefan problems, SIAM Rev., 52, No. 1, 57–86 (2010).MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    S. L. Mitchell and T. G. Myers, Improving the accuracy of heat balance integral methods applied to thermal problems with time dependent boundary conditions, Int. J. Heat Mass Transf., 53, No. 17, 3540–3551 (2010).CrossRefMATHGoogle Scholar
  19. 19.
    T. G. Myers, Optimal exponent heat balance and refined integral methods applied to Stefan problems, Int. J. Heat Mass Transf., 53, Nos. 5–6, 1119–1127 (2010).Google Scholar
  20. 20.
    T. G. Myers, Optimizing the exponent in the heat balance and refined integral methods, Int. Commun. Heat Mass Transf., 36, No. 2, 143–147 (2009).CrossRefGoogle Scholar
  21. 21.
    N. Sadoun, E. K. Si-Ahmed, P. Colinet, and J. Legrand, On the Goodman heat-balance integral method for Stefan-like problems: further considerations and refinements, Therm. Sci., 13, No. 2, 81–96 (2009).CrossRefGoogle Scholar
  22. 22.
    J. Caldwell and Y. Y. Kwan, Numerical methods for one-dimensional Stefan problems, Commun. Numer. Meth. Eng., 20, No. 7, 535–545 (2004).MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    J. Caldwell and Y. Y. Kwan, Numerical solution of the Stefan problems by the heat balance integral method, Part I — Cylindrical and spherical geometries, Commun. Numer. Meth. Eng., 16, 535–545 (2000).MathSciNetGoogle Scholar
  24. 24.
    J. Caldwell and Y. Y. Kwan, Starting solutions for the boundary immobilization method, Commun. Numer. Meth. Eng., 21, No. 6, 289–295 (2005).CrossRefMATHGoogle Scholar
  25. 25.
    N. Sadoun and E. K. Si-Ahmed, A new analytical expression of the freezing constant in the Stefan problem with initial superheat, Proc. 9th Int. Conf. “Numerical Methods in Thermal Problems, USA, Atlanta, GA (1995), Vol. 9, pp. 843–854.Google Scholar
  26. 26.
    N. Sadoun and E. K. Si-Ahmed, On the double integral method for solving Stefan-like problems, Proc. 1st Int. Thermal and Energy Congress, Marrakesh, Morocco (1993), Vol. 1, pp. 87–91.Google Scholar
  27. 27.
    N. Sadoun, E. K. Si-Ahmed, and P. Colinet, On the refined integral method for the one-phase Stefan problem with time-dependent boundary conditions, Appl. Math. Model., 30, No. 6, 531–544 (2006).CrossRefMATHGoogle Scholar
  28. 28.
    N. Sadoun, E. K. Si-Ahmed, and J. Legrand, On heat conduction with phase change: accurate explicit numerical method, J. Appl. Fluid Mech., 5, No. 1, 105–112 (2012).Google Scholar
  29. 29.
    V. N. Volkov and V. K. Li-Orlov, A refinement of the integral method in solving the heat conduction equation, Heat Transf. Sov. Res., 2, No. 2, 41–47 (1970).Google Scholar
  30. 30.
    R. S. Gupta and N. C. Banik, Approximate method for the oxygen diffusion problem, Int. J. Heat Mass Transf., 32, No. 4, 781–783 (1989).CrossRefGoogle Scholar
  31. 31.
    R. S. Gupta and N. C. Banik, Diffusion of oxygen in a sphere with simultaneous absorption, Appl. Math. Model., 14, No. 3, 114–121 (1990).CrossRefMATHGoogle Scholar
  32. 32.
    R. S. Gupta and N. C. Banik, Constrained integral method for solving moving boundary problems, Comput. Meth. Appl. Mech. Eng., 67, No. 2, 211–221 (1988).CrossRefMATHGoogle Scholar
  33. 33.
    S. L. Mitchell, Applying the combined integral method to one-dimensional ablation, Appl. Math. Model., 36, No. 1, 127–138 (2012).MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    T. G. Myers and S. L. Mitchell, Application of the combined integral method to Stefan problems, Appl. Math. Model., 35, No. 9, 4281–4294 (2011).MathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    S. L. Mitchell, Applying the combined integral method to two-phase Stefan problems with delayed onset of phase change, J. Comp. Appl. Math., 281, 58–73 (2015).MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    S. L. Mitchell and M. Vynnycky, Finite-difference methods with increased accuracy and correct initialization for one-dimensional Stefan problems, Appl. Math. Comput., 215, 1609–1621 (2009).MathSciNetMATHGoogle Scholar
  37. 37.
    J. Caldwell, S. Savovic, and Y. Y. Kwan, Nodal integral end finite difference solution of one-dimensional Stefan problem, J. Heat Transf. (ASME), 125, 523–527 (2003).CrossRefGoogle Scholar
  38. 38.
    S. Kutluay, A. R. Bahadir, and A. Ozdes, The numerical solution of one-phase classical Stefan problem, J. Comput. Appl. Math., 81, No. 1, 134–144 (1997).MathSciNetCrossRefMATHGoogle Scholar
  39. 39.
    Rizwan-Uddin, A nodal method for phase change moving boundary problems, Int. J. Comput. Fluid Dynam., No. 11, 211–221 (1999).Google Scholar
  40. 40.
    V. Voller and M. Cross, An explicit numerical method to track a moving phase change front, Int. J. Heat Mass Transf., 26, 147–150 (1983).CrossRefGoogle Scholar
  41. 41.
    S. L. Mitchell and M. Vynnycky, The oxygen diffusion problem: Analysis and numerical solution, Appl. Math. Model., 39, No. 9, 2763–2776 (2015).MathSciNetCrossRefGoogle Scholar
  42. 42.
    Whye-Teong Ang, A numerical method on integro-differential formulation for solving a one-dimensional Stefan problem, Numer. Meth. Partial Differ. Equ., 24, No. 3, 939–949 (2008).MathSciNetCrossRefMATHGoogle Scholar
  43. 43.
    V. A. Kot, Method of boundary characteristics, J. Eng. Phys. Thermophys., 88, No. 6, 1390–1408 (2015).CrossRefGoogle Scholar
  44. 44.
    V. A. Kot, Boundary characteristics for the generalized heat-conduction equation and their equivalent representations, J. Eng. Phys. Thermophys., 89, No. 4, 985–1007 (2016).CrossRefGoogle Scholar
  45. 45.
    D. Langford, The heat balance integral method, Int. J. Heat Mass Transf., 16, No. 12, 2424–2428 (1973).CrossRefGoogle Scholar
  46. 46.
    T. R. Goodman, The heat-balance integral –– further considerations and refinements, Trans. ASME, Ser. C, No. 1, 83–93 (1961).Google Scholar
  47. 47.
    A. S. Wood, A new look at the heat balance integral method, Appl. Math. Model., 25, No. 10, 815–824 (2001).CrossRefMATHGoogle Scholar
  48. 48.
    M. S. El-Genk and A. W. Cronenberg, Some improvements to the solution of Stefan-like problems, Int. J. Heat Mass Transf., 22, 167–177 (1979).CrossRefGoogle Scholar
  49. 49.
    V. Voller and M. Cross, Accurate solutions of moving boundary problems using the enthalpy method, Int. J. Heat Mass Transf., 24, 545–556 (1981).CrossRefMATHGoogle Scholar
  50. 50.
    J. Caldwell and C. C. Chan, Numerical solution of Stefan problems in annuli, in: C. A. Brebbia (Ed.), Advanced Computational Methods in Heat Transfer VI, B, WIT Press, Southampton and Boston (2000), pp. 215–225.Google Scholar
  51. 51.
    J. Caldwell and Y. Y. Kwan, Spherical solidification by the enthalpy method and heat balance integral method, in: C. A. Brebbia (Ed.), Advanced Computational Methods in Heat Transfer VII, B, WIT Press, Southampton and Boston (2002), pp. 165–174.Google Scholar
  52. 52.
    S. Kutluay, A. R. Bahadir, and A. Ozdes, The numerical solution of one-phase classical Stefan problem, J. Comput. Appl. Math., 81, 135–144 (1997).MathSciNetCrossRefMATHGoogle Scholar
  53. 53.
    N. Sadoun, P. Colinet, and E. K. Si-Ahmed, New analytical expression for the freezing constant using the refined integral method with cubic approximant, Multiscale Complex Fluid Flows and Interfacial Phenomena Conf. (MULTIFLOW 2010), Brussels, Belgium (2010); https://www.researchgate.net/profile/Nacer_Sadoun/publication/
  54. 54.
    F. Mosally, A. S. Wood, and A. Al-Fhaid, An exponential heat balance integral method, Appl. Math. Comput., 130, No. 1, 87–100 (2002).MathSciNetMATHGoogle Scholar
  55. 55.
    R. S. Gupta and D. Kumar, A modified variable time step method for the one-dimensional Stefan problem, Comput. Math. Appl. Mech. Eng., 23, 101–109 (1980).CrossRefMATHGoogle Scholar
  56. 56.
    R. S. Gupta and D. Kumar, Variable time step methods for one-dimensional Stefan problem with mixed boundary condition, Int. J. Mass Heat Transf., 24, 251–259 (1981).CrossRefMATHGoogle Scholar
  57. 57.
    S. Kutluay, Numerical schemes for one-dimensional Stefan-like problems with a forcing term, Appl. Math. Comput., 168, No. 2, 1159–1168 (2005).MathSciNetMATHGoogle Scholar
  58. 58.
    S. Kutluay and A. Elsen, An isotherm migration formulation for one-phase Stefan problem with time-dependent Neumann condition, Appl. Math. Comput., 150, No. 1, 59–67 (2004).MathSciNetMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.A. V. Luikov Heat and Mass Transfer InstituteNational Academy of Sciences of BelarusMinskBelarus

Personalised recommendations