Refinement of the Upper and Lower Bounds of Effective Heat Conductivity Coefficients of Rib-Reinforced Composite Media


We propose two refined structural models of the thermal behavior of a rib-reinforced composite medium at general anisotropy of the materials of compound components. For the criterion of equivalence of the rib-reinforced composite to the fictitious homogeneous anisotropic material, equality of the specific heat dissipation in them was used, which permits determining the upper and lower bounds of the effective heat conductivity coefficients of the composite material. The design values of the effective heat conductivity coefficients of a honeycomb structure with cavities filled and not filled with foam plastic have been determined. It has been shown that the refinement of certain thermal characteristics of 12%, and the refined "fork" of values of these quantities, does not exceed 2.5%. Indirect comparison has been made between the calculated and experimental values of the effective heat conductivity coefficients of such compounds, which has shown that the results obtained in the work are qualitatively reliable.


heat conductivity composites rib reinforcement structural theories general anisotropy dissipative equivalence effective characteristics light filler ribbed structures 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    1. A. Ya. Aleksandrov, L. É. Bryukker, L. M. Kurshin, and A. P. Prusakov, Calculation of Three-Layer Panels [in Russian], Oborongiz, Moscow (1960).Google Scholar
  2. 2.
    2. A. Ya. Aleksandrov, M. Ya. Borodin, and V. V. Pavlov, Structures with Foam Plastic Fillers [in Russian], Mashinostroenie, Moscow (1972).Google Scholar
  3. 3.
    L. É. Bryukker and A. S. Rakin, Testing of three-layer rods at normal and high temperatures, in: Dynamics and Strength of Aviation Constructions, Mezhvuz. Sbornik Nauchn. Trudov, Izd. NGU, NÉTI, Novosibirsk (1978), Issue 4, pp. 73–79.Google Scholar
  4. 4.
    A. K. Noor, W. S. Burton, and Ch. W. Bert, Computational models for sandwich panels and shells, Appl. Mech. Rev., 49, No. 3, 155–199 (1996).CrossRefGoogle Scholar
  5. 5.
    N. I. Akishev, I. I. Zakirov, V. N. Paimushin, and M. A. Shishov, A theoretical-and-experimental method of determining averaged elastic and spatial characteristics of a honeycomb filler for three-layer structures, Mekh. Kompozit. Mater., 47, No. 4, 543–556 (2011).Google Scholar
  6. 6.
    A. Wilbert, W.-Y. Jang, S. Kyriakides, and J. F. Floccari, Buckling and progressive crushing of laterally loaded honeycomb, Int. J. Solids Struct., No. 48, 803–816 (2011).CrossRefMATHGoogle Scholar
  7. 7.
    B. V. Averin, V. A. Kudinov, E. V. Stefanyuk, and S. A. Nazarenko, Thermal and stressed-strained state of a three-layer panel with a lattice filler exposed to solar radiation, in: Mathematical Simulation and Boundary-Value Problems, Proc. All-Russia Sci. Conf., May 26–28, 2004, Samara, Izd. SamGTU, Samara (2004), Part 2, pp. 15–19.Google Scholar
  8. 8.
    A. Vaziri, Z. Xue, and J. W. Hutchinson, Metal sandwich plates with polymer foam-filled cores, J. Mech. Mater. Struct., 1, No. 1, 97–127 (2006).CrossRefGoogle Scholar
  9. 9.
    9. N. S. Bakhvalov and G. P. Panasenko, Averaging of the Processes in Periodic Media. Mathematical Problems of the Mechanics of Composite Materials [in Russian], Nauka, Moscow (1984).MATHGoogle Scholar
  10. 10.
    A. G. Kolpakov, Composite Materials and Elements of Structures with Initial Stresses [in Russian], Izd. SO RAN, Novosibirsk (2007).Google Scholar
  11. 11.
    A. P. Yankovskii, Formulation of constitutive equations of the thermoelastic behavior of complexly reinforced foam plastics, Tekh. Mekh., No. 1, 71–82 (2010).Google Scholar
  12. 12.
    A. P. Yankovskii, Determination of the effective heat conductivity coefficients of complexly reinforced foam plastics, Prikl. Fiz., No. 2, 5–10 (2010).Google Scholar
  13. 13.
    G. L. Gorynin and Yu. V. Nemirovskii, Mathematical simulation of the process of heat conduction for 2D-periodic composite anisotropic materials, Mat. Metody Fiz.-Mekh. Polya, 57, No. 2, 142–151 (2014).MathSciNetMATHGoogle Scholar
  14. 14.
    V. M. Zhikov, S. M. Kozlov, and O. A. Oleinik, Averaging of Differential Operators [in Russian], Fizmatlit, Moscow (1993).Google Scholar
  15. 15.
    A. P. Yankovskii, Determination of the effective heat conductivity coefficients of fin-reinforced foam plastics on the basis of the energy equivalence criterion, Mat. Metody Fiz.-Mekh. Polya, 54, No. 1, 220–231 (2011).Google Scholar
  16. 16.
    A. P. Yankovskii, A revised structural model of the thermal conductivity of rib-reinforced foam plastics, Tepl. Prots. Tekh., 5, No. 4, 184–192 (2013).MathSciNetGoogle Scholar
  17. 17.
    A. A. Berlin (Ed.), Polymer Composite Materials: Structure, Properties, Technology: Textbook [in Russian], revised edn., Professiya, St. Petersburg (2009).Google Scholar
  18. 18.
    M. A. Biot, Variational Principles in Heat Transfer Theory [in Russian], Énergiya, Moscow (1975).Google Scholar
  19. 19.
    N. I. Bezukhov, V. L. Bazhanov, I. I. Gol′denblatt, N. A. Nikolaenko, and A. M. Sinyukov (I. I. Gol′denblatt Ed.), Calculations of the Strength, Stability, and Vibration under High-Temperature Conditions [in Russian], Mashinostroenie, Moscow (1965).Google Scholar
  20. 20.
    V. V. Vasiliev, V. D. Protasov, V. V. Bolotin, et al. (V. V. Vasiliev and Yu. M. Tarnopol′skii Eds.), Composite Materials: Handbook [in Russian], Mashinostroenie, Moscow (1990).Google Scholar
  21. 21.
    G. A. Vanin, Micromechanics of Composite Materials [in Russian], Naukova Dumka, Kiev (1985).MATHGoogle Scholar
  22. 22.
    A. P. Yankovskii, Refinement of the upper and lower limits of effective rigidities of rib-reinforced composite media, Mekh. Kompozit. Mater. Konstruktsii, 21, No. 1, 114–134 (2015).MathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.S. A. Khristianovich Institute of Theoretical and Applied MechanicsSiberian Branch of the Russian Academy of SciencesNovosibirskRussia

Personalised recommendations