Skip to main content
Log in

Influence of the Viscous Dissipation of a Liquid Filling a Tube on the Deformation and Orientation of Liquid Elements

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

The influence of the dissipation heating of a liquid filling a tube on the deformation, orientation, and distribution of liquid elements was investigated. Mathematical simulation of this process was performed on the basis of the equation of motion of the liquid and its continuity and energy equations with the initial and boundary conditions determined with account of the dependence of the viscosity of the liquid flow on its temperature, the presence of a free boundary in it, and the dissipation of its mechanical energy. The problem on the indicated liquid flow was solved numerically by the finite-difference method. The kinematics of this flow and its influence on the deformation and orientation of liquid elements was analyzed. The role of the viscous dissipation of the liquid in the formation of the thermomechanical history of the behavior of its elements in the process of filling of a tube with it is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. Tadmor, Molecular orientation in injection molding, J. Appl. Polym. Sci., 18, No. 6, 1753–1772 (1974).

    Article  Google Scholar 

  2. L. R. Schmidt, A special mold and tracer technique for studying shear and extensional flows in a mold cavity during injection molding, Polym. Eng. Sci., 14, No. 11, 797–800 (1974).

    Article  Google Scholar 

  3. A. I. Isayev, Orientation development in the injection molding of amorphous polymers, Polym. Eng. Sci., 23, No. 5, 271–284 (1983).

    Article  Google Scholar 

  4. H. Mavridis, A. N. Hrymak, and J. Vlachopoulos, Deformation and orientation of fluid elements behind an advancing flow front, J. Rheol., 30, No. 3, 555–563 (1986).

    Article  Google Scholar 

  5. H. Mavridis, A. N. Hrymak, and J. Vlachopoulos, The effect of fountain flow on molecular orientation in injection molding, J. Rheol., 32, No. 6, 639–663 (1988).

    Article  Google Scholar 

  6. H. Mavridis, Finite Element Studies in Injection Mold Filling, Ph.D. Thesis, Ontario, Canada, McMaster Univ., Hamilton (1988).

  7. X. Jin, Boundary element study on particle orientation caused by the fountain flow in injection molding, Polym. Eng. Sci., 33, No. 19, 1238–1242 (1993).

    Article  Google Scholar 

  8. T. Nguyen-Chung and G. Mennig, Non-isothermal transient flow and molecular orientation during injection mold filling, Rheol. Acta, 40, No. 1, 67–73 (2001).

    Article  Google Scholar 

  9. D. J. Coyle, J. W. Blake, and C. W. Macosco, The kinematics of fountain flow in mold-filling, AIChE J., 33, No. 7, 1168–1177 (1987).

    Article  Google Scholar 

  10. M. R. Kamal, S. K. Coyal, and E. Chu, Simulation of injection mold filling of viscoelastic polymer with fountain flow, AIChE J., 34, No. 1, 94–106 (1988).

    Article  Google Scholar 

  11. E. Mitsoulis, Fountain flow revisited: The effect of various fluid mechanics parameters, AIChE J., 56, No. 5, 1147–1162 (2010).

    Google Scholar 

  12. E. I. Borzenko, O. Yu. Frolov, and G. R. Shrager, Fountain viscous fluid flow during filling a channel when taking dissipative warming into account, Fluid Dyn., 49, No. 1, 37–45 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  13. E. I. Borzenko, O. Yu. Frolov, and G. R. Shrager, Fountain nonisothermal flow of a viscous liquid during the filling of a circular tube, Theor. Found. Chem. Eng., 48, No. 6, 824–831 (2014).

    Article  MATH  Google Scholar 

  14. E. I. Borzenko and G. R. Shrager, Effect of viscous dissipation on temperature, viscosity, and flow parameters while filling a channel, Thermophys. Aeromech., 21, No. 2, 211–221 (2014).

    Article  Google Scholar 

  15. W. Rose, Fluid–fluid interfaces in steady motion, Nature, 191, 242–243 (1961).

    Article  Google Scholar 

  16. I. A. Glushkov, Yu. M. Milekhin, V. M. Merkulov, and Yu. B. Banzula, Simulation of the Molding of Products from Free-Casting Composites [in Russian], Arkhitektura-S, Moscow (2007).

    Google Scholar 

  17. M. R. Kamal, A. I. Isayev, and S.-J. Liu, Injection Molding, Carl Hanser Verlag GmbH & Co. KG, Munich (2009).

    Book  Google Scholar 

  18. A. Ya. Malkin, The state of the art in the rheology of polymers: Achievements and challenges, Polym. Sci. Ser. A, 51, No. 1, 80–102 (2009).

    Article  Google Scholar 

  19. V. I. Yankov, V. I. Boyarchenko, V. P. Pervadchuk, I. O. Glot, and N. V. Shakirov, Processing of Fiber-Forming Polymers. Fundamentals of Polymer Rheology and Flow of Polymers in Channels [in Russian], Inst. Komp′yut. Issled., Moscow (2008).

    Google Scholar 

  20. H. Mavridis, A. N. Hrymak, and J. Vlachopoulos, Mathematical modeling of injection mold filling: A Review, Adv. Polym. Technol., 6, No. 4, 457–466 (1986).

    Article  Google Scholar 

  21. C. S. Li, C. F. Hung, and Y. K. Shen, Computer simulation and analysis of fountain flow and filling process in injection molding, J. Polym. Res., 1, No. 2, 163–173 (1994).

    Article  Google Scholar 

  22. C. Huh and L. E. Scriven, Hydrodynamic model of steady movement of a solid/liquid/fluid contact line, J. Colloid Interface Sci., 35, No 1, 85–101 (1971).

    Article  Google Scholar 

  23. V. V. Pukhnachev and V. A. Solonnikov, On the problem of dynamic contact angle, J. Appl. Math. Mech., 46, No. 6, 771–779 (1982).

    Article  MathSciNet  MATH  Google Scholar 

  24. E. I. Borzenko and G. R. Shrager, Effect of the type of boundary conditions on the three-phase contact line on the flow characteristics during filling of the channel, J. Appl. Mech. Tech. Phys., 56, No. 2, 167–176 (2015).

    Article  Google Scholar 

  25. I. M. Vasenin, O. B. Sidonskii, and G. R. Shrager, Numerical solution of the problem on the movement of a viscous fluid with a free surface, Dokl. Akad. Nauk SSSR, 217, No. 2, 295–298 (1974).

    Google Scholar 

  26. S. Patankar, Numerical Heat Transfer and Fluid Flow, Taylor & Francis, New York (1980).

    MATH  Google Scholar 

  27. F. H. Harlow and J. E. Welch, Numerical study of large amplitude free surface motions, Phys. Fluids, 9, No. 5, 842–851 (1965).

    Article  Google Scholar 

  28. D. Kothe, D. Juric, K. Lam, and B. Lally, Numerical Recipes for Moulding Simulation, Technical Report, LAUR-98-2114, Los Alamos National Laboratory (1998).

  29. A. M. Kutepov, A. D. Polyanin, Z. D. Zapryanov, A. V. Vyazmin, and D. A. Kazenin, Chemical Hydrodynamics: A Handbook [in Russian], Kvantum, Moscow (1996).

    Google Scholar 

  30. P. J. Roache, Fundamentals of Computational Fluids Dynamics, Hermosa Publishers, New Mexico (1998).

    Google Scholar 

  31. S. A. Kaganov, On a study of laminar flow of an incompressible liquid in a plane channel and a circular cylindrical tube with regard for the friction heat and the temperature dependence of the liquid viscosity, Prikl. Mekh. Tekh. Fiz., No. 3, 96–99 (1962).

  32. R. A. Behrens, M. J. Crochet, C. D. Denson, and A. B. Metzner, Transient free surface flows: motion of a fluid advancing in a tube, AIChE J., 33, No. 7, 1178–1186 (1987).

    Article  Google Scholar 

  33. E. Vos, H. E. H. Meijer, and G. W. M. Peters, Multilayer injection molding, Int. Polym. Process., 6, No. 1, 42–50 (1991).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Yu. Frolov.

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 89, No. 4, pp. 910–919, July–August, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borzenko, E.I., Frolov, O.Y. & Shrager, G.R. Influence of the Viscous Dissipation of a Liquid Filling a Tube on the Deformation and Orientation of Liquid Elements. J Eng Phys Thermophy 89, 911–920 (2016). https://doi.org/10.1007/s10891-016-1453-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-016-1453-1

Keywords

Navigation