Skip to main content
Log in

Estimation of the Drop Size in Dispersed Flow

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

The formulas for calculating the characteristic drop size for the mean Sauter diameter have been compared. The question on various forms of the size distribution of drops has been considered. To substantiate the applicability of the compared formulas for calculating the thermohydrodynamics in the circuits of nuclear power plants, experimental data on the wall temperature in a dispersed flow have been used. It has been shown that the Sauter diameter values calculated using the wall temperature in the supercritical region are in good agreement with sparse direct measurements of the drop size in steam–water flows. The drop sizes calculated using the tested formulas obtained for two-component gas–liquid flows or for single-component flows of coolants (various kinds of freons) and liquefied nitrogen turned out to be much lower. It has been shown that it is necessary to recalculate the numerical coefficients in the considered formulas in using them for steam–water flows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. A. Styrikovich, Yu. V. Baryshev, M. E. Grigor′eva, and E. M. Konovalova, A model for calculating the heat transfer for steam water disperse at flow, Teplofiz. Vys. Temp., 21, No. 1, 122–129 (1982).

    Google Scholar 

  2. E. N. Ganić and W. M. Rohsenow, Dispersed flow heat transfer, Int. J. Heat Mass Transf., 20, No. 8, 855–866 (1977).

    Article  Google Scholar 

  3. O. G. Stonik and I. L. Mostinskii, Account of the interaction of droplets with a hot wall in calculating the heat transfer in the supercritical region of dispersed annular flow, Izv. Ross. Akad. Nauk, Énergetika, No. 5, 132–140 (2008).

  4. RELAP5/MOD3. Code Manual. Volume IV: Models and Correlations. NUREG/CR–5535 INEL–95/0174, Idaho National Engineering Laboratory (1995).

  5. H. Austregesilo, C. Bals, A. Hora, G. Lerchl, and P. Romstedt, ATHLET Mod 2.1 Cycle A. Models and Methods, Gesellschaft für Anlagenund Reaktorsicherheit (GRS) mbH (2006).

  6. J. Miettinen and A. Hämäläinen, GENFLO — A General Thermal Hydraulic Solution for Accident Simulation. VTT Processes. Research Notes 2163, Julkaisija-Utgivare- Publisher, Otamedia Oy, Espoo (2002).

  7. J. W. Spore, J. S. Elson, S. J. Jolly-Woodruff, T. D. Knight, J.-C. Lin, R. A. Nelson, K. O. Pasamehmetoglu, R. G. Steinke, and C. Unal, TRAC–M/FORTRAN 90 (Version 3.0). Theory Manual. LA–UR–00–910 — Los Alamos National Laboratory, Los Alamos, New Mexico (2000).

  8. Yu. V. Yudov, S. N. Volkova, and Yu. A. Migrov, Closing relations of the thermohydraulic model of KORSAR computational code, Teploénergetika, No. 11, 22–29 (2002).

  9. I. Kataoka, M. Ishii, and K. Mishima, Generation and size distribution of droplet in annular two-phase flow, J. Fluids Eng., 105, No. 2, 230−238 (1983).

    Article  Google Scholar 

  10. G. Kocamustafaogullari and M. Ishii, Foundation of the interfacial area transport equation and its closure relations, Int. J. Heat Mass Transf., 38, No. 3, 481–493 (1995).

    Article  MATH  Google Scholar 

  11. A. W. Bennett, G. F. Hewitt, H. A. Kearsey, and R. K. F. Keeys, Heat transfer to steam–water mixtures flowing in uniformly heated tubes in which the critical heat flux has been exceeded, United Kingdom Atomic Energy Authority, AERE–R5373 (1967).

  12. L. Nilsson, Assessment of RELAP5/MOD3 Against Twenty-Five Post-Dryout Experiments Performed at the Royal Institute of Technology, NUREG/IA–0094.STUDS VIK/NS–90/93, Sweden (1993).

  13. N. D. Agafonova and I. L. Paramonova, Heat transfer in dispersed steam–water flow in the channel, Teploénergetika, No. 8, 1–5 (2014).

  14. D. N. Plummer, O. S. Iloeje, W. M. Rohsenow, P. Griffith, and E. Ganić, Post Critical Heat Transfer to Flowing Liquid in a Vertical Tube, Report No. 72718-91, MIT, Cambridge, Massachusetts (1974).

  15. Z. L. Miropol′skii, Heat transfer to superheated vapor with heat input and removal, Teploénergetika, No. 3, 75–78 (1975).

  16. S. Whitaker, Forced convection heat transfer correlations for flow in pipes, past flat plates, single cylinders, single spheres and for flow in packed beds and tube bundles, AIChE J., 18, No. 2, 361–371 (1972).

    Article  Google Scholar 

  17. A. G. Girin, Distribution of dispersed droplets upon breaking of the drop in a high-velocity gas flow, J. Eng. Phys. Thermophys., 84, No. 4, 872–880 (2011).

    Article  Google Scholar 

  18. S. Y. Ahmad, Fluid to fluid modeling of critical heat flux: a compensated distortion model, Int. J. Heat Mass Transf., 16, No. 4, 641–662 (1973).

    Article  Google Scholar 

  19. L. B. Fore, B. B. Ibrahim, and S. G. Beus, Visual measurements of droplet size in gas–liquid annular flow, Int. J. Multiphase Flow, 28, No. 12, 1896–1910 (2002).

    Article  MATH  Google Scholar 

  20. D. F. Tatterson, J. C. Dallman, and T. J. Hanratty, Drop sizes in annular gas–liquid flows, AIChE J., 23, No. 1, 68–76 (1977).

    Article  Google Scholar 

  21. T. Ueda and K. Kim, Dryout heat flux and size of entrained drops, Bull. JSME, 25, No. 200, 225−233 (1982).

    Article  Google Scholar 

  22. M. Cumo, J. E. Farello, J. Ferrari, and J. Palazzi, High-dispersion two-phase flows, Heat Transf., 96, No. 4, 66–72 (1974).

    Article  Google Scholar 

  23. J. Collier and J. Thome, Convective Boiling and Condensation, Clarendon Press, Oxford (1994).

    Google Scholar 

  24. A. J. Ireland, L. E. Hochreiter, and F.-B. Cheung, Droplet size and velocity measurements in a heated rod bundle, The 6th ASME–JSME Thermal Eng. Joint Conf., March 16–20, 2003, TED–AJ03–624.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. D. Agafonova.

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 89, No. 4, pp. 837–845, July–August, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agafonova, N.D., Paramonova, I.L. Estimation of the Drop Size in Dispersed Flow. J Eng Phys Thermophy 89, 840–847 (2016). https://doi.org/10.1007/s10891-016-1444-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-016-1444-2

Keywords

Navigation