Ignition of Hydrogen–Oxygen Mixtures Behind the Incident Shock Wave Front


Experimental investigation of the ignition of a stoichiometric hydrogen–oxygen mixture behind an incident shock wave in a shock tube at pressures p = 0.002–0.46 MPa and temperatures T = 500–1000 K is carried out. The existence of three limits of ignition typical of the ignition of hydrogen–oxygen mixtures in a spherical vessel is noted. It is shown that at pressures p ≥ 0.1 MPa the ignition of a hydrogen–oxygen mixture begins at a much lower temperature than the ignition of a hydrogen–air mixture. The measured induction times agree well with theoretical estimates.


hydrogen–oxygen mixtures combustion ignition limits induction time incident shock wave 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Cecere, E. Giacomazzi, and A. Ingenito, A review on hydrogen industrial aerospace applications, Int. J. Hydrogen Energy, 39, No. 20, 10731–10747 (2014).CrossRefGoogle Scholar
  2. 2.
    A. A. Shekarian, S. Tabejamaat, and Y. Shoraka, Effects of incident shock wave on mixing and flame holding of hydrogen in supersonic air flow, Int. J. Hydrogen Energy, 39, No. 19, 10284–10292 (2014).CrossRefGoogle Scholar
  3. 3.
    E. Schultz and J. Shepherd, Validation of detailed reaction mechanisms for detonation simulation, Tech. Report FM99-5, California Institute of Technology, Pasadena (2000).Google Scholar
  4. 4.
    V. A. Pavlov and G. Ya. Gerasimov, Measurement of ignition limits and induction times of hydrogen–air mixtures behind the incident shock wave front at low temperatures, J. Eng. Phys. Thermophys., 87, No. 6, 1291–1297 (2014).CrossRefGoogle Scholar
  5. 5.
    M. Steinberg and W. E. Kaskan, The ignition of combustible mixtures by shock waves, Proc. Combust. Inst., 5, 664–672 (1955).CrossRefGoogle Scholar
  6. 6.
    V. V. Voevodskii and R. I. Soloukhin, Concerning the mechanism and the limits of chain self-ignition of hydrogen with oxygen in shock waves, Dokl. Akad. Nauk SSSR, 154, No. 6, 1425–1428 (1964).Google Scholar
  7. 7.
    A. Cohen and J. Larsen, Explosive mechanism of the H2–O2 reaction near the second ignition limit, Techn. Report BRL-1386, Aberdeen Proving Ground: Ballistic Research Laboratories (1967).Google Scholar
  8. 8.
    B. Lewis and G. von Elbe, Combustion, Flames and Explosions of Gases, Academic Press, New York (1951).Google Scholar
  9. 9.
    S. P. Medvedev, G. L. Agafonov, S. V. Khomik, and B. E. Gelfand, Ignition delay in hydrogen–air and syngas–air mixtures: Experimental data interpretation via flame propagation, Combust. Flame, 157, No. 7, 1436–1438 (2010).CrossRefGoogle Scholar
  10. 10.
    G. Ya. Gerasimov and O. P. Shatalov, Kinetic mechanism of combustion of hydrogen–oxygen mixtures, J. Eng. Phys. Thermophys., 86, No. 5, 987–995 (2013).CrossRefGoogle Scholar
  11. 11.
    M. Kuznetsov, R. Redlinger, W. Breitung, J. Grune, A. Friedrich, and N. Ichikawa, Laminar burning velocities of hydrogen–oxygen–steam mixtures at elevated temperatures and pressures, Proc. Combust. Inst., 33, No. 1, 895–903 (2011).CrossRefGoogle Scholar
  12. 12.
    M. F. G. Cremers, M. J. Remie, K. R. A. M. Schreel, and L. P. H. de Goey, Heat transfer mechanisms of laminar flames of hydrogen + oxygen, Combust. Flame, 139, Nos. 1–2, 39–51 (2004).Google Scholar
  13. 13.
    A. D. Snyder, J. Robertson, D. L. Zanders, and G. B. Skinner, Shock tube studies of fuel–air ignition characteristics, Tech. Report AFAPL-TR-65-93, Air Force Aero-Propulsion Laboratory, Wright-Patterson (1965).Google Scholar
  14. 14.
    M. W. Slack, Rate coefficient for H + O2 + M = HO2 + M evaluated from shock tube measurements of induction times, Combust. Flame, 28, No. 1, 241–249 (1977).CrossRefGoogle Scholar
  15. 15.
    R. R. Craig, A shock tube study of the ignition delay of hydrogen–air mixtures near the second explosion limit, Techn. Report AFAPL-TR-66-74, Air Force Aero-Propulsion Laboratory, Wright-Patterson (1966).Google Scholar
  16. 16.
    E. Dzimińska and A. K. Hayashi, Auto-ignition and DDT driven by shock wave–boundary layer interaction in oxyhydrogen mixture, Int. J. Hydrogen Energy, 38, No. 10, 4185–4193 (2013).CrossRefGoogle Scholar
  17. 17.
    K. P. Grogan and M. Ihme, Weak and strong ignition of hydrogen/oxygen mixtures in shock-tube systems, Proc. Combust. Inst., 35, No. 2, 2181–2189 (2015).CrossRefGoogle Scholar
  18. 18.
    P. V. Kozlov, S. A. Losev, and Yu. V. Romanenko, Measurement of the induction time of the H2 + O2 reaction initiated by a shock wave in a stoichiometric mixture (2011); www.chemphys.edu.ru/media/files/2011-09-01-002.pdf.

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Institute of Mechanics, M. V. Lomonosov Moscow State UniversityMoscowRussia

Personalised recommendations