Mathematical Modeling of Combustion of a Mixture of Ultradisperse Aluminum Powder with Water

  • A. Yu. Krainov
  • D. A. Krainov
  • V. A. Poryazov

The authors present a physicomathematical model of combustion of a mixed solid fuel in the form of a mixture of ultradisperse aluminum powder with gel-like water. The model takes account of the combustion of aluminum particles in steam, the motion of combustion products, and the lag of the velocity of motion of the particles behind that of the gas. The results of calculating the combustion rate are consistent with experimental data on the dependence of the rate of combustion of the mixture of ultradisperse aluminum powder with water on pressure.


ultradisperse aluminum powder water rate of combustion processes in the gas phase mathematical modeling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. Ya. Yavorovskii, Obtaining ultradisperse metal powders by the method of electric blasting of conductors, Izv. Vyssh. Uchebn. Zaved., Fizika, 39, No. 4, 114–135 (1996).Google Scholar
  2. 2.
    A. A. Gromov, A. P. Il′in, V. A. Arkhipov, A. G. Korotkikh, T. A. Khabas, E. M. Popenko, A. A. Dits, and L. O. Tolbanova, Physics and Chemistry of Combustion of Metal Nanopowders in Nitrogenous Media [in Russian], Izd. Tomsk. Univ., Tomsk (2007).Google Scholar
  3. 3.
    A. P. Lyashko, A. A. Medvedinskii, G. G. Savel′ev, A. P. Il′in, and N. Ya. Yavorovskii, Features of interaction between submicron aluminum powders and liquid water: macrokinetics, products, and the appearance of self-heating by water, Kinet. Katal., 31, No. 4, 967–972 (1950).Google Scholar
  4. 4.
    P. A. Vityaz′, A. F. Il′yushchenko, L. V. Sudnik, Yu. A. Mazalov, and A. V. Bersh, Functional Materials based on Nanostructured Aluminum-Hydroxide Powders [in Russian], Belaruskaya Navuka, Minsk (2010).Google Scholar
  5. 5.
    V. G. Ivanov, S. N. Leonov, G. L. Savinov, O. V. Gavrilyuk, and O. V. Glazkov, Combustion of mixtures of ultradisperse aluminum with gel-like water, Fiz. Goreniya Vzryva, 30, No. 4, 167–168 (1994).Google Scholar
  6. 6.
    V. G. Ivanov, O. V. Gavrilyuk, O. V. Glazkov, and M. N. Safronov, Features of the reaction of ultradisperse aluminum powder with water in a combustion regime, Fiz. Goreniya Vzryva, 36, No. 2, 60–66 (2000).Google Scholar
  7. 7.
    G. A. Risha, R. A. Yetter, V. Yang, S. F. Son, and B. C. Tappan, Combustion of nano-aluminum and liquid water, Proc. Combust. Inst., 31, No. 2, 2029–2036 (2007).CrossRefGoogle Scholar
  8. 8.
    Y. Sun and B. Zhu, Combustion characteristics of an AL/H2O mixture with polyoxyethylene, Ind. Eng. Chem. Res., 50, No. 24, 14136–14141 (2011).CrossRefGoogle Scholar
  9. 9.
    T. L. Connell Jr., G. A. Risha, R. A. Yetter, V. Yang, and S. F. Son, Combustion of bimodal aluminum particles and ice mixtures, Int. J. Energ. Mater. Chem. Propuls., 11, No. 3, 259–273 (2012).Google Scholar
  10. 10.
    T. L. Pourpoint, T. D. Wood, M. A. Pfeil, J. Tsohas, and S. F. Son, Feasibility study and demonstration of an aluminum and ice solid propellant, Int. J. Aerospace Eng., Vol. 2012. Article ID 874076; DOI: 10.1155/2012/874076.
  11. 11.
    Ashvin Kumar Narayana Swamy and E. Shafirovich, Conversion of aluminum foil to powders that react and burn with water, Combust. Flame, 161, Issue 1, 322–331 (2014).Google Scholar
  12. 12.
    W. Ki, V. Shmelev, S. Finiakov, Y. Cho, and W. Yoon, Combustion of micro aluminum–water mixtures, Combust. Flame, 160, Issue 12, 2990–2995 (2013).CrossRefGoogle Scholar
  13. 13.
    A. F. Belyaev, On combustion of nitroglycol, in: The Theory of Combustion of Gunpowders and Explosives [in Russian], Nauka, Moscow (1982), pp. 10–34.Google Scholar
  14. 14.
    M. W. Beckstead, Analysis of data on the combustion time of aluminum particles, Fiz. Goreniya Vzryva, 41, No. 5, 55–69 (2005).Google Scholar
  15. 15.
    D. A. Yagodnikov, Ignition and Combustion of Powdered Metals [in Russian], Izd. MGTU im. N. É. Baumana, Moscow (2009).Google Scholar
  16. 16.
    V. A. Poryazov and A. Yu. Krainov, Mathematical modeling of combustion of mixed compositions containing finely divided aluminum, Izv. Vyssh. Uchebn. Zaved., Fizika, 56, No. 9/3, 196–199 (2013).Google Scholar
  17. 17.
    V. A. Poryazov and A. Yu. Krainov, Influence of the fractional composition of aluminum powder as part of H gunpowder on the rate of its combustion, Tr. Tomsk. Gos. Univ., Ser. Fiz.-Mat., 292, 39–42 (2014).Google Scholar
  18. 18.
    M. Yu. Ivanitskii and A. Yu. Krainov, Calculation of the rate of combustion of H gunpowder doped with aluminum powder, Tr. Tomsk. Gos. Univ., Ser. Fiz.-Mat., 276, 120–124 (2010).Google Scholar
  19. 19.
    V. A. Poryazov, A. Yu. Krainov, and D. A. Krainov, Simulating the combustion of H powder with added finely divided aluminum, J. Eng. Phys. Thermophys., 88, No. 1, 94–103 (2015).CrossRefGoogle Scholar
  20. 20.
    Handbook of Heat Exchangers [in Russian], in 2 vols., Vol. 1, Énergoatomizdat, Moscow (1987).Google Scholar
  21. 21.
    A. A. Dement′ev and A. Yu. Krainov, On the problem of propagation of a laminar flame in a gas laden with inert dust, Fiz. Goreniya Vzryva, 47, No. 4, 70–75 (2011).Google Scholar
  22. 22.
    M. A. Gurevich, K. I. Lapkina, and E. S. Ozerov, Limiting conditions of ignition of an aluminum particle, Fiz. Goreniya Vzryva, 6, No. 2, 172–175 (1970).Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • A. Yu. Krainov
    • 1
  • D. A. Krainov
    • 1
  • V. A. Poryazov
    • 1
  1. 1.Tomsk State UniversityTomskRussia

Personalised recommendations