Journal of Engineering Physics and Thermophysics

, Volume 89, Issue 1, pp 127–134 | Cite as

Mathematical Modeling of the Heat Transfer and Chemical Reaction of a Swirling Flow of a Dissociative Gas


The authors give the results of investigations into the heat transfer of a swirling flow reacting to absorb the heat of the gas in a cylindrical channel. The performed analysis shows that the heat transfer grows with the flow swirl near the tube inlet and decreases downstream. To intensify the heat transfer it is necessary to organize the flow so that the region with the dominance of centrifugal forces occupies a major portion of the channel.


swirling flows heat transfer chemical reaction computational hydrodynamics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. B. Nesterenko and B. E. Tverkovkin, Heat Transfer in Nuclear Reactors with a Dissociative Coolant [in Russian], Nauka i Tekhnika, Minsk (1980).Google Scholar
  2. 2.
    I. G. Dik (J. H. Dueck) and O. V. Matvienko, Heat transfer of a swirling flow in the presence of the endothermal reaction, Teplofiz. Vys. Temp., No. 2, 190–191 (1990).Google Scholar
  3. 3.
    I. B. Vikhorev, Heat and mass transfer and resistance in internal flows of multicomponent chemically reactive gas mixtures, Vestn. Mosk. Gos. Tekh. Univ., 1, No. 2, 89–94 (1998).Google Scholar
  4. 4.
    B. S. Petukhov, L. G. Genin, and S. A. Kovalev, Heat Transfer in Power Reactor Facilities [in Russian], Énergoatomizdat, Moscow (1974).Google Scholar
  5. 5.
    B. S. Petukhov, Issues of Heat Transfer. Selected Works [in Russian], Nauka, Moscow (1987).Google Scholar
  6. 6.
    L. G. Loitsyanskii, Mechanics of Liquids and Gases [in Russian], Nauka, Moscow (1974).MATHGoogle Scholar
  7. 7.
    I. G. Dik (J. H. Dueck) and O. V. Matvienko, Calculation of the regimes of burning of a swirling gas flow in an ideally displaced tubular reactor, Fiz. Goreniya Vzryva, No. 2, 89–94 (1991).Google Scholar
  8. 8.
    W. P. Jones and B. E. Launder, The calculation of low Reynolds number phenomena with a two-equation model of turbulence, Int. J. Heat Mass Transf., 16, 1119−1130 (1973).CrossRefGoogle Scholar
  9. 9.
    J. Piquet, Turbulent Flows: Models and Physics, Springer, Berlin (1999).MATHGoogle Scholar
  10. 10.
    O. V. Matvienko, Analysis of turbulence models and investigation of the structure of the flow in a hydrocyclone, J. Eng. Phys. Thermophys., 77, Issue 2, 316−323 (2004).CrossRefGoogle Scholar
  11. 11.
    O. V. Matvienko, V. P. Bazuev, and N. K. Yuzhanova, Numerical study of the turbulent transition of internal swirling flows of bituminous binders, Vestn. Tomsk. Gos. Arkhit.-Stroit. Univ., No. 2, 132−143 (2013).Google Scholar
  12. 12.
    V. P. Bazuev, O. V. Matvienko, and V. L. Voronenko, Modeling of the process of modification of bitumen in a cavitationmixing disperser, Vestn. Tomsk. Gos. Arkhit.-Stroit. Univ., No. 4, 121–128 (2010).Google Scholar
  13. 13.
    A. Gupta, D. Lilly, and N. Saired, Spiral Flows [Russian translation], Mir, Moscow (1987).Google Scholar
  14. 14.
    A. A. Khalatov, Theory and Practice of Swirling Flows [in Russian], Naukova Dumka, Kiev (1989).Google Scholar
  15. 15.
    I. G. Dik (J. H. Dueck) and O. V. Matvienko, Heat transfer of swirling flows with a volume heat source, Zh. Prikl. Mekh. Tekh. Fiz., No. 5, 113–116 (1989).Google Scholar
  16. 16.
    I. G. Dik (J. H. Dueck) and O. V. Matvienko, Heat transfer and combustion for a spiral flow in an ideal-displacement reactor, J. Eng. Phys. Thermophys., 60, Issue 2, 171–177 (1991).CrossRefGoogle Scholar
  17. 17.
    V. M. Ushakov and O. V. Matvienko, Numerical investigation of unsteady heat exchange in ignition for reactive channel walls by the flow of a high-temperature viscous gas, J. Eng. Phys. Thermophys., 75, Issue 4, 1107–1112 (2002).CrossRefGoogle Scholar
  18. 18.
    V. M. Ushakov and O. V. Matvienko, Numerical investigation of the heat exchange and firing of reactive channel walls by a high-temperature swirling-gas flow, J. Eng. Phys. Thermophys., 78, Issue 3, 541–547 (2005).CrossRefGoogle Scholar
  19. 19.
    O. V. Matvienko, A. I. Baigulova, and A. M. Bubenchikov, Mathematical modeling of catalytic oxidation of methane in a channel with a porous insert, J. Eng. Phys. Thermophys., 87, Issue 6, 1298–1312 (2014).CrossRefGoogle Scholar
  20. 20.
    O. V. Matvienko, Heat transfer and formation of turbulence in an internal swirling fluid flow at low Reynolds numbers, J. Eng. Phys. Thermophys., 87, Issue 4, 940–950 (2014).CrossRefGoogle Scholar
  21. 21.
    S. Patankar, Numerical Heat Transfer and Fluid Flow [Russian translation], Énergoatomizdat, Moscow (1983).Google Scholar
  22. 22.
    J. H. Ferziger and M. Perič, Computational Methods for Fluid Dynamics, Springer, Berlin (1996).CrossRefMATHGoogle Scholar
  23. 23.
    B. Van Leer, Towards the ultimate conservative differencing scheme. IV. A new approach to numerical convection, J. Comp. Phys., 23, 276–299 (1977).CrossRefMATHGoogle Scholar
  24. 24.
    A. Harten, High resolution schemes for hyperbolic conservation laws, J. Comp. Phys., 49, 357–393 (1983).MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    J. P. Van Doormal and G. D. Raithby, Enhancements of the SIMPLE method for predicting incompressible fluid flows, Numer. Heat Transf., 7, 147−163 (1984).MATHGoogle Scholar
  26. 26.
    B. S. Petukhov and V. K. Shikov (eds.), A Handbook of Heat Exchangers [Russian translation], Vol. 1, Énergoatomizdat, Moscow (1987).Google Scholar
  27. 27.
    R. A. Svebla and R. S. Brokaw, Thermodynamic and Transport Properties for the N 2 O 4 ↔ 2NO 2 ↔ 2NO+O 2 System, NASA TN D-3327 (1966).Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Tomsk State UniversityTomskRussia
  2. 2.Tomsk State University of Architecture and Civil EngineeringTomskRussia

Personalised recommendations