Advertisement

Journal of Engineering Physics and Thermophysics

, Volume 88, Issue 6, pp 1569–1576 | Cite as

Analytical Estimation of Velocity and Temperature Fields in a Circular Pipe on the Basis of Stochastic Equations and Equivalence of Measures

  • A.V. Dmitrenko
Article

A stream of nonisothermal Newtonian liquid in a circular smooth pipe is considered on the basis of systems of stochastic equations and of the physical law of equivalence of measures between laminar and turbulent motions. Analytical expressions were previously obtained for isothermal flows for the first and second critical Reynolds numbers, critical point, indices of velocity profiles, second-order correlation moments, correlation functions, and spectral functions depending on the parameters of initial turbulence. Analytical expressions, obtained with the use of the earlier derived formulas for the critical Reynolds numbers and the critical points, are presented for the indices of velocity and temperature profiles as functions of the initial turbulence parameters as well as of the Eckert and Prandtl numbers.

Keywords

equivalence of measures stochastic equations turbulence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. D. Landau, Toward the problem of turbulence, Dokl. Akad. Nauk SSSR, 44, 339−342 (1944).Google Scholar
  2. 2.
    A. N. Kolmogorov, A new metric invariant of transitive dynamic systems and automorphisms of the Lebesgue spaces, Dokl. Akad. Nauk SSSR, 119, No. 5, 861–864 (1958).MathSciNetMATHGoogle Scholar
  3. 3.
    A. N. Kolmogorov, About the entropy per time unit as a metric invariant of automorphisms, Dokl. Akad. Nauk SSSR, 124, No. 4, 754–755 (1959).MathSciNetMATHGoogle Scholar
  4. 4.
    A. N. Kolmogorov, Mathematical models of turbulent motion of an incompressible viscous fluid, Usp. Mat. Nauk, 59, Issue 1(355), 5–10 (2004).Google Scholar
  5. 5.
    E. N. Lorenz, Deterministic nonperiodic flow, J. Atmos. Sci., 20, 130−141 (1963); doi:  10.1175/1520-0469.CrossRefGoogle Scholar
  6. 6.
    D. Ruelle and F. Takens, On the nature of turbulence, Commun. Math. Phys., 20, 167−192 (1971), also 23, 343−344; http://dx.doi.org/ 10.1007/bf01646553.
  7. 7.
    M. Feigenbaum, The transition to aperiodic behavior in turbulent systems, Commun. Math. Phys., 77, No. 1, 65–86 (1980).CrossRefMathSciNetMATHGoogle Scholar
  8. 8.
    M. I. Rabinovich, Stochastic self-oscillations and turbulence, Usp. Fiz. Nauk, 125, 123−168 (1978).CrossRefMathSciNetGoogle Scholar
  9. 9.
    A. S. Monin, On the nature of turbulence, Usp. Fiz.Nauk, 125, 97−122 (1978).Google Scholar
  10. 10.
    M. I. Rabinovich and M. M. Sushchik, Coherent structures in turbulent flows, in: A. V. Gaponov and M. I. Rabinovich (Eds.), Nonlinear Waves. Self-Organization [in Russian], Nauka, Moscow (1983), pp. 58–84.Google Scholar
  11. 11.
    G. M. Zaslavskii, Stochasticity of Dynamic Systems [in Russian], Nauka, Moscow (1984).Google Scholar
  12. 12.
    V. V. Struminskii, Origination of turbulence, Dokl. Akad. Nauk SSSR, 307, No. 3, 564–567 (1989).Google Scholar
  13. 13.
    A. A. Samarskii, V. I. Mazhukin, P. P. Matus, and I. A. Mikhailik, Z/2 conservative schemes for the Korteweg–de Vries equations, Dokl. Akad. Nauk, 357, No. 4, 458–461 (1997).MathSciNetGoogle Scholar
  14. 14.
    Yu. L. Klimontovich, Problems of the statistical theory of open systems: criteria of the relative degree of the ordering of states in the self-organization processes, Usp. Fiz. Nauk, 158, Issue 1, 59–91 (1989); doi:  10.1070/pu1999v042n01abeh000445.CrossRefMathSciNetGoogle Scholar
  15. 15.
    K. R. Sreenivasan, Fractals and multifractals in fluid turbulence, Ann. Rev. Fluid Mech., 23, 539–600 (1991).CrossRefMathSciNetGoogle Scholar
  16. 16.
    S. A. Orzag and L. C. Kells, Transition to turbulence in plane Poiseuille and plane Couette flow, J. Fluid Mech., 96, No. 1, 159−205 (1980); doi.org/ 10.1017/s0022112080002066/.
  17. 17.
    A. V. Dmitrenko, Equivalence of measures and stochastic equations for turbulent fl ows, Dokl. Akad. Nauk, 450, No. 6, 651–658 (2013); doi.org/ 10.1134/s1028335813060098.
  18. 18.
    A. V. Dmitrenko, Equivalent measures and stochastic equations for determination of the turbulent velocity fields and correlation moments of the second order, Abstr. Int. Conf. "Turbulence and Wave Processes,"Lomonosov Moscow State University, November 26−28, 2013, Moscow(2013),pp. 39–40; http://www.dubrovinlab.msu.ru/turbulencemdm100ru.
  19. 19.
    A. V. Dmitrenko, Theory of Equivalent Measures and Sets with Repeating Denumerable Fractal Elements. Stochastic Thermodynamics and Turbulence. Determinacy–Randomness Correlator [in Russian], Galleya-Print, Moscow (2013); http://search.rsl.ru/ru/catalog/record/6633402.
  20. 20.
    A. V. Dmitrenko, Regular Coupling between Deterministic (Laminar) and Random (Turbulent) Motions — Equivalence of Measures, Scientifi c Discovery Diploma No. 458, registration No. 583 of December 2, 2013.Google Scholar
  21. 21.
    A. V. Dmitrenko, Some analytical results of the theory of equivalence measures and stochastic theory of turbulence for non-isothermal flows, Adv. Stud. Theor. Phys., 8, No. 25, 1101−1111 (2014); http://dx.doi.org/10.12988/astp.2014.49131.
  22. 22.
    A. V. Dmitrenko, The theory of equivalence measures and stochastic theory of turbulence for non-isothermal flow on the flat plate, First Thermal and Fluids Engineering Summer Conference, August 9−12, 2015, New York, NY, USA, "Thermal Fluids Engineering Addressing Grand Challenges"; http://www.astfe.org/tfesc/conference_program/.
  23. 23.
    A. V. Dmitrenko, Determination of critical Reynolds numbers for non-isothermal flows using stochastic theories of turbulence and equivalent measures, Heat Transf. Res., 46, Issue 12, 1102−1112 (2015); DOI: 10.1615/HeatTransRes.2015014191; http://dl.begellhouse.com/journals/46784ef93dddff27,forthcoming.html.
  24. 24.
    A. V. Dmitrenko, Fundamentals of Heat and Mass Transfer and Hydrodynamics of Single-Phase and Two-Phase Media. Criteria, Integral and Statistical Methods, and Direct Numerical Simulation [in Russian], Galleya-Print, Moscow(2008).Google Scholar
  25. 25.
    J. O. Hinze, Turbulence, 2nd edn., McGraw-Hill Book Company, New York (1975).Google Scholar
  26. 26.
    A. S. Monin and A. M. Yaglom, Statistical Fluid Mechanics, Vols. 1 and 2, MIT Press, Cambridge, Massachusetts, USA(1971).Google Scholar
  27. 27.
    H. Schlichting, Boundary-Layer Theory, 6th edn., McGraw-Hill Book Company, New York (1968).Google Scholar
  28. 28.
    S. B. Pope, Turbulent Flows, Cambridge University Press, Cambridge, UK (2000); http://dx.doi.org/ 10.1017/cbo9780511840531.
  29. 29.
    P. A. Davidson, Turbulence, Oxford University Press, New York (2004).MATHGoogle Scholar
  30. 30.
    A. V. Dmitrenko, Calculation of the pulsations of pressure of heterogeneous turbulent flows, Dokl. Akad. Nauk, 415, No. 1, 44–47 (2007); http://dx.doi.org/ 10.1134/s1028335807120166.
  31. 31.
    A. V. Dmitrenko, Calculation of the boundary layer of atwo-phase medium, High Temp., 40, Issue 5, 706–715 (2002); http://dx.doi.org/ 10.1023/A:1020436720213.
  32. 32.
    V. G. Priymak, Splitting dynamics of coherent structures in a transitional round-pipe flow, Dokl. Phys., 58, No. 10, 457–465 (2013).CrossRefGoogle Scholar
  33. 33.
    A. V. Fursikov, Moment theory for Navier–Stokes equations with a random right-hand side, Izv. Ross. Akad. Nauk, 56, No. 6, 1273–1315 (1992).Google Scholar
  34. 34.
    A. V. Dmitrenko, Heat and mass transfer and friction in injection to a supersonic region of the Laval nozzle, Heat Transf. Res., 31, Issues 6–8, 338−399 (2000); http://dx.doi.org/: 10.1615/HeatTrasRes.v31.i6-8.30.
  35. 35.
    A. V. Dmitrenko, Film cooling in nozzles with large geometric expansion using method of integral relation and second moment closure model for turbulence, 33th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit AIAA Paper 97-2911 (1997); doi:  10.2514/6.1997-2911. http://arc.aiaa.org/doi/abs/ 10.2514/6.1997-2911.
  36. 36.
    A. V. Dmitrenko, Heat and mass transfer in combustion chamber using a second-moment turbulence closure including an influence coefficient of the density fluctuation in film cooling conditions, 34th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, AIAA Paper 98-3444 (1998); doi:  10.2514/6.1998-3444; http://arc.aiaa.org/doi/abs/ 10.2514/6.1998-3444.
  37. 37.
    A. V. Dmitrenko, Nonselfsimilarity of a boundary-layer flow of a high-temperature gas in a Laval nozzle, Aviats. Tekh., No. 1, 39–42 (1993).Google Scholar
  38. 38.
    A. V. Dmitrenko, Computational investigations of a turbulent thermal boundary layer in the presence of external flow pulsations, in: Proc. 11th Conf. Young Scientists, Moscow Physicotechnical Institute, Part 2, Moscow (1986), pp. 48–52. Deposited at VINITI 08.08.86, No. 5698-В86.Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.National Research Nuclear University (MIFI)MoscowRussia
  2. 2.Moscow State University of Railways (MIIT)MoscowRussia

Personalised recommendations