Advertisement

Journal of Engineering Physics and Thermophysics

, Volume 88, Issue 6, pp 1442–1450 | Cite as

Isothermal Deposition of Droplets and Nanoparticles from the Incident Gas Jet onto a Substrate

  • Yu. A. Stankevich
  • S. P. Fisenko
Article

By computational-hydrodynamics methods the authors have investigated the field of the gas velocity in the flow developed after the turn of the gas jet near the substrate. Consideration has been given to the problem on deposition of charged micron-size droplets from radial flow above the substrate by the action of the external electrostatic field. A study has been made of the influence of Brownian diffusion on the nanoparticle deposition from the laminar radial flow above the substrate. The authors have introduced similarity numbers for these problems and have determined their influence on the efficiency of deposition.

Keywords

computational gasdynamics laminar flow electrostatic deposition Brownian diffusion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Wegner, P. Piseri, V. H. Tafreshi, and P. Milani, Cluster beam deposition: a tool for nanoscale science and technology, J. Phys. D: Appl. Phys., 39, 439–459 (2006).CrossRefGoogle Scholar
  2. 2.
    Th. J. Krinke, K. Deppert, M. H. Magnusson, F. Schmidt, and H. Fissan, Microscopic aspects of the deposition of nanoparticles from the gas phase, J. Aerosol Sci., 33, 1341–1359 (2002).CrossRefGoogle Scholar
  3. 3.
    O. G. Penyazkov, V. I. Saverchenko, and S. P. Fisenko, Regimes of electrostatic deposition of femtoliter droplets of solutions onto the electrode substrate at a low pressure, Dokl. Nats. Akad. Nauk Belarusi, 58, No. 5, 102–105 (2014).Google Scholar
  4. 4.
    M. Nikravech, Spray plasma device, a new method to process nanostructured layers. Application to deposit ZnO thin layers, J. Nanosci. Nanotechnol., 10, 1171–1178 (2010).CrossRefGoogle Scholar
  5. 5.
    M. Gen, S. Ikawa, Sh. Sagawa., and I. W. Lenggoro, Simultaneous deposition of submicron aerosols onto both surfaces of a plate substrate by electrostatic forces, J. Surface Sci. Nanotechnol., 12, 238–241 (2014).CrossRefGoogle Scholar
  6. 6.
    M. Kubo, Y. Ishihara, Y. Mantani, and M. Shimada, Evaluation of the factors that infl uence the fabrication of porous thin fi lms by deposition of aerosol nanoparticles, Chem. Eng. J., 232, 221–227 (2013).CrossRefGoogle Scholar
  7. 7.
    L. D. Landau and E. M. Lifshits, Hydrodynamics [in Russian], Nauka, Moscow (1980).Google Scholar
  8. 8.
    G. N. Abramovich, Applied Gas Dynamics [in Russian], Nauka, Moscow (1969).Google Scholar
  9. 9.
    V. Sh. Shagapov and S. A. Gil’manov, A contribution to the theory of spreading of liquid-containing ejections over a horizontal surface, J. Eng. Phys. Thermophys., 88, Issue 3, 630–644 (2015).CrossRefGoogle Scholar
  10. 10.
    Yu. P. Raizer, The Physics of Gaseous Discharges, Springer, New York (1992).Google Scholar
  11. 11.
    A. A. Brin’, S. P. Fisenko, and A. I. Shnip, Brownian deposition of nanoparticles from the laminar gas fl ow in a pipe, Zh. Tekh. Fiz., 78, No. 9, 41–45 (2008).Google Scholar
  12. 12.
    O. G. Bakunin, Stochastic instability and turbulent transfer. Characteristic scale, increments, and diffusion coefficients, Usp. Fiz. Nauk, 185, 271–306 (2015).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.A. V. Luikov Heat and Mass Transfer InstituteNational Academy of Sciences of BelarusMinskBelarus

Personalised recommendations