Simulation of the Turbulent air Flow Over a Circular Cavity with a Variable Opening Angle in an U-Shaped Channel

  • S. A. Isaev
  • P. A. Baranov
  • A. E. Usachov
  • Yu. V. Zhukova
  • A. A. Vysotskaya
  • D. A. Malyshkin

A numerical investigation of the influence of the opening angle of a circular cavity in an U-shaped channel and the Reynolds number of a fluid fl ow in this channel on the local characteristics and turbulence of this fl ow has been performed based on the solution of the Reynolds equations, closed by the old and new Menter shear-stress transfer models and two variants of this model accounting for the curvature of streamlines, with the use of multiblock computational technologies realized in the VP2/3 package. The results of calculations were compared with each other and with experimental data of I. Castro and R. Savelsberg. This comparison has shown that the best agreement between the numerical predictions and experiments is obtained in the case where calculations are performed within the framework of the Leshtsiner–Rody–Isaev approach with correction for the eddy viscosity of the fluid fl ow. It was established that with increase in the Reynolds number and in the opening angle of the cavity the circulation flow in the near-wall layer of the vortex trapped in the cavity intensifies at a practically constant vorticity in the core of the vortex.


vortex cell U-shaped channel circular cavity trapped vortex turbulence 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. A. Lavrentiev and B. V. Shabat, Hydrodynamics Problems and Their Mathematical Models [in Russian], Nauka, Moscow (1977).Google Scholar
  2. 2.
    G. K. Batchelor, On steady laminar fl ow with closed streamlines at large Reynolds number, J. Fluid Mech., 1, 177–190 (1956).MATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    H. B. Square, Note on the motion inside a region of recirculation (cavity fl ow), J. Roy. Aeronaut. Soc., 60, No. 543, 203–205 (1956).Google Scholar
  4. 4.
    A. V. Bunyakin, S. I. Chernyshenko, and G. Y. Stepanov, High-Reynolds-number Batchelor model asymptotics of a flow past an aerofoil with a vortex trapped in a cavity, J. Fluid Mech., 358, 238–297 (1998).MathSciNetCrossRefGoogle Scholar
  5. 5.
    I. A. Belov, I. P. Ginzburg, and S. A. Isaev, Motion and heat transfer in a closed region in the presence of mobile boundaries, Vestn. LGU, No. 13, 41–50 (1976).Google Scholar
  6. 6.
    A. D. Gosman, W. M. Pun, A. K. Runchal, D. B. Spalding, and M. Wolfstein, Numerical Methods in Fluid Dynamics [Russian translation], Mir, Moscow (1972).Google Scholar
  7. 7.
    I. A. Belov, S. A. Isaev, and V. A. Korobkov, Problems and Calculation Methods for Detached Flows of an Incompressible Fluid [in Russian], Sudostroenie, Leningrad (1989).Google Scholar
  8. 8.
    S. A. Isaev, P. A. Baranov, N. A. Kudryavtsev, D. A. Lisenko, and A. E. Usachov, Complex analysis of turbulence models, algorithms, and grid structures at the computation of recirculating fl ow in a cavity by means of VP2/3 and FLUENT packages. Part. 1. Scheme factors infl uence, Thermophys. Aeromech., 12, No. 4, 549–569 (2005).Google Scholar
  9. 9.
    S. A. Isaev, P. A. Baranov, N. A. Kudryavtsev, D. A. Lisenko, and A. E. Usachov, Complex analysis of turbulence models, algorithms, and grid structures at the computation of recirculating fl ow in a cavity by means of VP2/3 and FLUENT packages. Part. 2. Estimation of models adequacy, Thermophys. Aeromech., 13, No. 1, 55–65 (2006).CrossRefGoogle Scholar
  10. 10.
    S. A. Isaev, P. A. Baranov, A. G. Sudakov, and N. A. Mordynsky, Numerical analysis of vortex dynamics and unsteady turbulent heat transfer in lid-driven square cavity, Thermophys. Aeromech., 15, No. 3, 463–475 (2008).CrossRefGoogle Scholar
  11. 11.
    S. A. Isaev, P. A. Baranov, Yu. V. Zhukova, A. E. Usachov, and V. B. Kharchenko, Correction of the shear-stress-transfer model with account of the curvature of streamlines in calculating separated fl ows of an incompressible viscous fluid, J. Eng. Phys. Thermophys., 87, No. 4, 1002–1015 (2014).CrossRefGoogle Scholar
  12. 12.
    R. D. Mills, On the closed motion of a fl uid in a square cavity, J. Roy. Aeronaut. Soc., 69, 116–120 (1965).Google Scholar
  13. 13.
    P. Chen, Separated Flows [Russian translation], Vol. 2, Mir, Moscow (1973).Google Scholar
  14. 14.
    A. I. Savitsky, L. N. Schukin, V. G. Karelin, A. M. Maas, A. P. Shibanov, A. P. Sobko, A. V. Ermishin, V. G. Khucishvilli, V. G. Pushkin, and R. M. Fischenko, Method for Control of the Boundary Layer on the Aerodynamic Surface of an Aircraft, and the Aircraft Provided with the Boundary Layer Control System, United States Patent No. 5417391, May 23, 1995.Google Scholar
  15. 15.
    A. V. Ermishin and S. A. Isaev (Eds.), Control of Flow Past Bodies with Vortex Cells as Applied to Flying Vehicles of Integral Arrangement (Numerical and Physical Modeling) [in Russian], MGU, Moscow (2003).Google Scholar
  16. 16.
    F. De Gregorio and G. Fraioli, Flow control on a high thickness airfoil by a trapped vortex cavity, in: Proc. 14th Int. Symp. on Applications of Laser Techniques to Fluid Mechanics, 7–10 July 2008, Lisbon, Portugal. Pp. 1–12.Google Scholar
  17. 17.
    R. Savelsberg and I. P. Castro, Vortex fl ows in open cylindrical-section cavities, Exp. Fluids, 46, 485–497 (2009).CrossRefGoogle Scholar
  18. 18.
    S. A. Isaev, S. V. Guvernyuk, M. A. Zubin, and Yu. S. Prigorodov, Numerical and physical modeling of a low-velocity air fl ow in a channel with a circular vortex cell, J. Eng. Phys. Thermophys., 73, No. 2, 337–344 (2000).CrossRefGoogle Scholar
  19. 19.
    P. A. Baranov, S. V. Guvernyuk, M. A. Zubin, and S. A. Isaev, Numerical and physical modeling of the circulation in a vortex cell in the wall of a rectangular channel, Fluid Dynam., 35, No 5, 663–673 (2000).MATHCrossRefGoogle Scholar
  20. 20.
    S. A. Isaev, P. A. Baranov, S. V. Guvernyuk, and M. A. Zubin, Numerical and physical modeling of turbulent flow in a divergent channel with a vortex cell, J. Eng. Phys. Thermophys., 75, No. 2, 269–276 (2002).CrossRefGoogle Scholar
  21. 21.
    F. R. Menter, Zonal two equation k-w turbulence models for aerodynamic fl ows, AIAA Paper, No. 2906, 1–21 (1993).Google Scholar
  22. 22.
    K. M. Saqr, H. S. Aly, H. I. Kassem, M. M. Sies, and M. A. Wahid, Computations of shear driven vortex fl ow in a cylindrical cavity using a modifi ed k–ε turbulence model, Int. Commun. Heat Mass Transf., 37, 1072–1077 (2010).CrossRefGoogle Scholar
  23. 23.
    F. R. Menter, M. Kuntz, and R. Langtry, Ten years of industrial experience with the SST turbulence model, in: K. Hajalic, Y. Nogano, and M. Tummers (Eds.), Turbulence, Heat and Mass Transfer, Begell House, Inc. (2003).Google Scholar
  24. 24.
    M. Leshtsiner and U. Rodi, Calculation of annular and twin parallel jets using various fi nite-difference schemes and turbulence models, Teor. Osn. Inzh. Rasch., 103, No. 2, 299–308 (1981).Google Scholar
  25. 25.
    V. B. Kharchenko, Numerical Simulation of Separated Flows with Vortex and Jet Generators on the Basis of Multiblock Computational Technologies, Doctoral Dissertation (in Engineering), Sankt-Peterburgsk. Gos. Morsk. Univ., St. Peterburg (2005).Google Scholar
  26. 26.
    P. E. Smirnov and F. Menter, Sensitization of the SST turbulence model to rotation and curvature by applying the Spalart–Shur correction term, in: Proc. ASME Turbo Expo Conf., No. GT2008-50480 (2008).Google Scholar
  27. 27.
    Yu. A. Bystrov, S. A. Isaev, N. A. Kudryavtsev, and A. I. Leontiev, Numerical Simulation of the Vortical Intensification of the Heat Transfer in Tube Banks [in Russian], Sudostroenie, St. Petersburg (2005).Google Scholar
  28. 28.
    S. A. Isaev, P. A. Baranov, and A. E. Usachov, Multiblock Computational Technologies in the VP2/3 Package on Aerothermodynamics, LAP LAMBERT Academic Publishing, Saarbrucken (2013).Google Scholar
  29. 29.
    J. P. Van Doormaal and G. D. Raithby, Enhancement of the SIMPLE method for predicting incompressible fluid fl ow, Numer. Heat Transf., 7, No. 2, 147–163 (1984).MATHGoogle Scholar
  30. 30.
    S. M. Rhi and U. L. Chou, Numerical calculation of turbulent fl ow past a profi le with separation at the rear edge, Aérokosm. Tekh., 2, No. 7, 33–43 (1984).Google Scholar
  31. 31.
    B. P. Leonard, A stable and accurate convective modeling procedure based on quadratic upstream interpolation, Comput. Methods Appl. Mech. Eng., 19, No. 1, 59–98 (1979).MATHCrossRefGoogle Scholar
  32. 32.
    R. W. Lewis, K. Morgan, and O. C. Zienkiewicz (Eds.), Numerical Methods in Heat Transfer, John Wiley and Sons Ltd, New York (1981).MATHGoogle Scholar
  33. 33.
    I. A. Belov and S. A. Isaev, Simulation of Turbulent Flows: a Textbook [in Russian], Baltiisk. Gos. Tekh. Univ., St. Petersburg (2001).Google Scholar
  34. 34.
    R. Donelli, P. Ionelli, S. Chernyshenko, A. Iollo, and I. Zannetti, Flow models for a vortex cell, AIAA J., 47, No. 2, 451–467 (2009).CrossRefGoogle Scholar
  35. 35.
    S. A. Isaev, N. V. Kornev, A. I. Leontiev, and E. Hassel, Influence of the Reynolds number and the spherical dimple depth on the turbulent heat transfer and hydraulic loss in a narrow channel, Int. J. Heat Mass Transf., 53, Issues 1–3, 178–197 (2010).MATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • S. A. Isaev
    • 1
    • 4
  • P. A. Baranov
    • 1
  • A. E. Usachov
    • 2
  • Yu. V. Zhukova
    • 3
  • A. A. Vysotskaya
    • 1
  • D. A. Malyshkin
    • 4
  1. 1.St. Petersburg State University of Civil AviationSt. PetersburgRussia
  2. 2.Moscow Complex of the Central Aerohydrodynamic InstituteMoscowRussia
  3. 3.A. V. Luikov Heat and Mass Transfer InstituteNational Academy of Sciences of BelarusMinskBelarus
  4. 4.Kazan National Research Technical University (A. N. Tupolev Kazan Aviation Institute)KazanRussia

Personalised recommendations