Advertisement

Aerosol Cloud Propagation in a Closed Space

  • O. B. Kudryashova
  • N. V. Korovina
  • A. A. Pavlenko
  • V. A. Arkhipov
  • V. D. Gol′din
  • E. V. Muravlev
HEAT AND MASS TRANSFER IN DISPERSE AND POROUS MEDIA
  • 52 Downloads

This paper presents the results of an experimental–theoretical investigation of the evolution of a cloud of aerosol particles in a closed space obtained by the shock-wave method. It has been shown that the prevailing propagation mechanism of aerosol particles of diameter 1–7.5 μm is convective diffusion. For the considered class of aerosols, the effective value of the convective diffusion coeffi cient in a closed space has been determined.

Keywords

aerosol particles shock-wave method aerosol cloud propagation closed space diffusion gravity sedimentation particle concentration mathematical modeling experimental investigation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. I. Pirumov, Dust Removal from Air [in Russian], Stroiizdat, Moscow (1981).Google Scholar
  2. 2.
    A. B. Vorozhtsov, V. A. Arkhipov, V. N. Parmon, G. V. Sakovich, A. S. Zharkov, et al., A Method of Air Purifi cation and Decontamination, RF Patent 2450851, published 20.05.2012, Byull. No. 14.3.Google Scholar
  3. 3.
    O. G. Penyazkov, V. I. Saverchenko, and S. P. Fisenko, Low-temperature pyrolysis and production of nanoparticles by rapid evaporation of micron droplets of aqueous solutions, Pis′ma Zh. Tekh. Fiz., 39, Issue 3, 56–62 (2013).Google Scholar
  4. 4.
    N. V. Korovina, O. B. Kudryashova, A. A. Antonnikova, and B. I. Vorozhtsov, Liquid atomization by impulse action, Izv. Vyssh. Ucheb. Zaved., Fizika, 56, No. 9/3, 169–172 (2013).Google Scholar
  5. 5.
    D. G. Pazhi and V. S. Galustov, Liquid Atomizers [in Russian], Khimiya, Moscow (1979).Google Scholar
  6. 6.
    V. A. Arkhipov, S. S. Bondarchuk, M. Ya. Evsevleev, I. K. Zharova, A. S. Zhukov, S. V. Zmanovskii, E. A. Kozlov, A. I. Konovalenko, and V. F. Trofimov, Experimental investigation of the dispersion of liquid by ejection atomizers, J. Eng. Phys. Thermophys., 86, No. 6, 1306–1314 (2013).CrossRefGoogle Scholar
  7. 7.
    B. I. Vorozhtsov, O. B. Kudryashova, A. N. Ishmatov, I. R. Akhmadeev, and G. V. Sakovich, Explosion generation of liquid-drop aerosols and their evolution , J. Eng. Phys. Thermophys., 83, No. 6, 1149–1169 (2010).CrossRefGoogle Scholar
  8. 8.
    O. B. Kudryashova, A. A. Pavlenko, B. I. Vorozhtsov, S. S. Titov, V. A. Arkhipov, S. S. Bondarchuk, E. A. Maksimenko, I. S. Akhmadeev, and E. V. Muravlev, Remote optical diagnostics of nonstationary aerosol media in a wide range of particle sizes, Photodetectors, InTech, Croatia (2012), pp. 341–364.Google Scholar
  9. 9.
    R. I. Nigmatulin, Dynamics of Multiphase Media [in Russian], Pt. 1, Nauka, Moscow (1991).Google Scholar
  10. 10.
    L. D. Landau and E. M. Lifshits, Theoretical Physics, Vol. 6, Hydrodynamics [in Russian], Nauka, Moscow (1986).Google Scholar
  11. 11.
    V. I. Terekhov, V. V. Terekhov, N. E. Shishkin, and K. Ch. Bi, Experimental and numerical investigation of nonstationary evaporation of liquid droplets, J. Eng. Phys. Thermophys., 83, No. 5, 883–890 (2010).CrossRefGoogle Scholar
  12. 12.
    A. A. Brin′, S. P. Fisenko, and Yu. A. Khodyko, Characteristic features of evaporative cooling of droplets in hightemperature fl ows, J. Eng. Phys. Thermophys., 84, No. 2, 292–297 (2011).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • O. B. Kudryashova
    • 1
  • N. V. Korovina
    • 1
  • A. A. Pavlenko
    • 1
    • 3
  • V. A. Arkhipov
    • 1
    • 2
  • V. D. Gol′din
    • 2
  • E. V. Muravlev
    • 1
  1. 1.Institute for Problems of Chemical-Energy TechnologiesSiberian Branch of the Russian Academy of SciencesBiiskRussia
  2. 2.Research Institute of Applied Mathematics and MechanicsTomsk State UniversityTomskRussia
  3. 3.Tomsk State UniversityTomskRussia

Personalised recommendations