Simulating the Combustion of N Powder with Added Finely Divided Aluminum


A mathematical model for combustion of N powder with added aluminum particles is presented. It takes account of the exothermal chemical reaction in the gas phase, convection and diffusion, heating, and combustion of aluminum particles in the gas flow, the motion of combustion products, and the lag of the particle velocity behind that of the gas. The results of calculation of the burning velocity of powder correspond to the experimental data on the dependence of this velocity on pressure and aluminum particle size. It has been established computationally that for aluminum particles of diameter less than 20 μm the burning velocity of N powder depends substantially on the size of these particles.


N powder gas-dispersive medium aluminum particles ignition combustion 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. F. Belyaev, Combustion, Detonation, and the Work of Explosion of Condensed Systems [in Russian], Nauka, Moscow (1968).Google Scholar
  2. 2.
    N. N. Bakhman and A. F. Belyaev, Combustion of Heterogeneous Condensed Systems [in Russian], Nauka, Moscow (1967).Google Scholar
  3. 3.
    P. F. Pokhil, A. F. Belyaev, Yu. V. Frolov, V. S. Logachev, and A. I. Korotkov, Combustion of Powdery Metals in Active Media [in Russian], Nauka, Moscow (1972).Google Scholar
  4. 4.
    V. M. Mal′tsev, M. I. Mal′tsev, and L. Ya. Kashporov, Basic Characteristics of Combustion [in Russian], Khimiya, Moscow (1977).Google Scholar
  5. 5.
    Ya. B. Zel′dovich, Toward the theory of solid rocket propellants and explosives, Zh. Éxp. Teor. Fiz., 12, 498–524 (1942).Google Scholar
  6. 6.
    Ya. B. Zel′dovich, O. I. Leipunskii, and V. B. Librovich, The Theory of the Unsteady-State Combustion of Powder [in Russian], Nauka, Moscow (1975).Google Scholar
  7. 7.
    B. V. Novozhilov, Unsteady-State Combustion of Solid Rockets Propellants [in Russian], Nauka, (1972).Google Scholar
  8. 8.
    Ya. B. Zel′dovich, G. I. Barenblatt, V. B. Librovich, and G. M. Makhviladze, Mathematical Theory of Combustion and Explosion [in Russian], Nauka, Moscow (1980).Google Scholar
  9. 9.
    L. K. Gusachenko, V. E. Zarko, V. Ya. Zyryanov, and V. P. Bobryshev, Simulation of the Processes of Combustion of Solid Propellants [in Russian], Nauka, Novosibirsk (1985).Google Scholar
  10. 10.
    N. A. Silin, V. D. Gladun, V. E. Zarko, L. Ya. Kashporov, and L. A. Malinin, Processes of Nonstationary Combustion of Heterogeneous Condensed Systems [in Russian], Mashinostroenie, Moscow (1984).Google Scholar
  11. 11.
    I. G. Assovskii, The Physics of Combustion and Internal Ballistics [in Russian], Nauka, Moscow (2005).Google Scholar
  12. 12.
    A. M. Lipanov, Physicochemical and Mathematical Models of Combustion of Composite Solid Propellants [in Russian], Preprint, IPM UrO RAN, Moscow (2007).Google Scholar
  13. 13.
    L. K. Gusachenko and V. E. Zarko, Analysis of the models of combustion of energy-rich substances with entirely gaseous products of reaction, Fiz. Goreniya Vzryva, 41, No. 1, 24–40 (2005).Google Scholar
  14. 14.
    A. G. Merzhanov and B. I. Khaikin, Theory of Combustion Waves in Homogeneous Media [in Russian], OIKhF AN SSSR, Chernogolovka (1992).Google Scholar
  15. 15.
    V. K. Bulgakov and A. M. Lipanov, Theory of Erosive Combustion of Solid Rocket Propellants [in Russian], Nauka, Moscow (2001).Google Scholar
  16. 16.
    V. N. Vilyunov and A. A. Dvoryashin, On the laws governing the combustion of the N powder in a gas flow, Fiz. Goreniya Vzryva, 7, No. 1, 45–51 (1971).Google Scholar
  17. 17.
    A. F. Belyaev, Yu. V. Frolov, and A. I. Korotkov, About combustion and ignition of finely divided aluminum particles, Fiz. Goreniya Vzryva, 4, No. 3, 323–329 (1968).Google Scholar
  18. 18.
    B. S. Ermolaev, A. A. Belyaev, and A. A. Sulimov, Numerical simulation of the convective combustion of porous composite systems based on finely divided aluminum and ammonium perchlorate, Khim. Fiz., 24, 79–89 (2005).Google Scholar
  19. 19.
    G. I. Leonov, Temperature of the combustion surface of nitrocellulose powders as the determining factor of linear burning velocity at high pressures, Élektr. Fiz.-Tekh. Zh., 2, 55–62 (2007).Google Scholar
  20. 20.
    A. G. Merzhanov, B. I. Khaikin, and K. G. Shkadinskii, Establishment of the stationary distribution of flame on gas ignition by a glowing surface, Prikl. Mekh. Tekh. Fiz., No. 5, 42–48 (1969).Google Scholar
  21. 21.
    V. D. Gladun, Yu. V. Frolov, and L. Ya. Kashporov, The process of the merging of metal particles on the surface of a burning fuel, Fiz. Aérodisp. Sist., Issue 14, 97–99 (1976).Google Scholar
  22. 22.
    Handbook on Heat Exchangers [in Russian], in 2 vols., Vol. 1, Énergoizdat, Moscow (1987).Google Scholar
  23. 23.
    G. Volfhard, I. Glassman, and L. Green (Eds.), Heterogeneous Combustion, Collection of scientific papers [Russian translation], Mir, Moscow (1967).Google Scholar
  24. 24.
    V. A. Babuk, V. A. Vasilyev, and M. S. Malakhov, Condensed combustion products at the burning surface of aluminized solid propellant, J. Propul. Power, 15, No. 6, 783–793 (1999).CrossRefGoogle Scholar
  25. 25.
    M. Yu. Ivanitskii and A. Yu. Krainov, Calculation of the rate of combustion of N powder with an admixture of finely divided aluminum, Trud. Tomsk. Gos. Univ., Ser. Fiz.-Mat., 276, 120–124 (2010).Google Scholar
  26. 26.
    A. A. Dement′ev and A. Yu. Krainov, Concerning the propagation of a laminar flame in a gas laden with an inert dust, Fiz. Goreniya Vzryva, 47, No. 4, 70–75 (2011).Google Scholar
  27. 27.
    A. A. Gromov, A. P. Il′in, V. A. Arkhipov, A. G. Korotkikh, T. A. Khabas, E. M. Popenko, A. A. Dits, and L. O. Tolbanova, Physics and Chemistry of the Combustion of Metal Nanopowders in Nitrogen-Containing Media [in Russian], Izd. Tomsk. Univ., Tomsk (2007).Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • V. A. Poryazov
    • 1
  • A. Yu. Krainov
    • 1
  • D. A. Krainov
    • 1
  1. 1.Tomsk National Research State UniversityTomskRussia

Personalised recommendations