Skip to main content
Log in

Design of a Gas–Liquid Unbaffled Stirred Tank with a Concave Blade Impeller

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

Experimental investigation of unbaffled multiphase (gas–liquid) stirred tanks is conducted with the use of a concave blade impeller to analyze mass transfer, gassed power, and gas holdup. The experiments are carried out with various impeller diameter to tank diameter ratios and impeller clearances. The design criterion for the mass transfer rate is proposed, and its prediction capability is found to be satisfactory. The results show that the gassed power is dependent on the impeller diameter to tank diameter ratio and impeller clearance. The design criteria for gassed power to ungassed power ratio and gas holdup are also introduced. Multiphase modeling is done by employing the computational fluid dynamics (CFD) techniques to observe the characteristic flow pattern transition and to carry out a qualitative analysis of the mass transfer rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Y. S. Liu, J. Y. Wu, and K. P. Ho, Characterization of oxygen transfer conditions and their effects on phaffia rhodozyma growth and carotenoid production in shake-fl ask cultures, Biochem. Eng. J., 27, 331–335 (2006).

    Article  Google Scholar 

  2. P. F. F. Amaral, M. G. Freire, M. H. M. R. Leao, I. M. Marrucho, J. A. P. Coutinho, and M. A. Z. Coelho, Optimization of oxygen mass transfer in a multiphase bioreactor with perfluorodecalin as a second liquid phase, Biotechnol. Bioeng., 99, 588–598 (2008).

    Article  Google Scholar 

  3. A. Karimi, F. Golbabaei, M. Neghab, M. R. Mehrnia, K. Mohammad, M. R. Pourmand, and A. Nikpey, Investigation of oxygen transfer in a two-phase partition stirred tank bioreactor in the presence of silicone oil, Chem. Biochem. Eng. Q., 25, 209–219 (2011).

    Google Scholar 

  4. P. Chunmei, M. Jian, L. Xinhong, and G. Zhengming, Investigation of fluid flow in a dual Rushton impeller stirred tank using particle image velocimetry, Chin. J. Chem. Eng., 16, 693–699 (2008).

    Article  Google Scholar 

  5. R. Zadghaffari, J. S. Moghaddas, and J. Revstedt, Large-eddy simulation of turbulent flow in a stirred tank driven by a Rushton turbine, Comput. Fluids, 39, 1183–1190 (2010).

    Article  MATH  Google Scholar 

  6. Z. Li, Y. Bao, and Z. Gao, PIV experiments and large eddy simulations of single-loop flow fields in Rushton turbine stirred tanks, Chem. Eng. Sci., 66, 1219–1231 (2011).

    Article  Google Scholar 

  7. M. Taghavi, R. Zadghaffari, J. Moghaddas, and Y. Moghaddas, Experimental and CFD investigation of power consumption in a dual Rushton turbine stirred tank, Chem. Eng. Res. Des., 89, 280–290 (2011).

    Article  Google Scholar 

  8. F. Saito, A. W. Nienow, S. Chatwin, and I. P. T. Moore, Power, gas dispersion and homogenization characteristics of Scaba SRGT and Rushton turbine impellers, J. Chem. Eng., 25, 281–287 (1992).

    Article  Google Scholar 

  9. M. Cooke, J. C. Middleton, and J. R. Bush, Bioreactor fluid dynamics, in: Proc. 2nd Bioreactor Conf., Cambridge, UK, BHRA (1988), pp. 37–64.

  10. Z. D. Chen and J. J. J. Chen, Comparison of mass transfer performance for various single and twin impellers, Chem. Eng. Res. Des., 77, 104–109 (1999).

    Article  Google Scholar 

  11. B. H. Junker, Z. Mann, and G. Hunt, Retrofit of CD-6 (Smith) impeller in fermentation vessels, Appl. Biochem. Biotech., 89, 67–83 (2000).

    Article  Google Scholar 

  12. B. Mazzarotta, Comminution phenomena in stirred sugar suspensions, AIChE Symp. Ser., 89,112–117 (1993).

    Google Scholar 

  13. J. M. Rousseaux, H. Muhr, and E. Plasari, Mixing and micromixing times in the forced vortex region of unbaffled mixing devices, Can. J. Chem. Eng., 79, 697–707 (2001).

    Article  Google Scholar 

  14. L. E. Aloi and R. S. Cherry, Cellular response to agitation characterized by energy dissipation at the impeller tip, Chem. Eng. Sci., 51, 1523–1529 (1996).

    Article  Google Scholar 

  15. M. Assirelli, W. Bujalski, A. Eaglesham, and A. W. Nienow, Macro- and micromixing studies in an unbaffled vessel agitated by a Rushton turbine, Chem. Eng. Sci., 63, 35–46 (2008).

    Article  Google Scholar 

  16. F. Grisafi, A. Brucato, and L. Rizzuti, Solid–liquid mass transfer coefficient in mixing tanks: influence of side wall roughness, IChemE Symp. Ser., 136, 571–578 (1994).

    Google Scholar 

  17. M. Yoshida, A. Kimura, K. Yamagiwa, A. Ohkawa, and S. J. Tezura, Movement of solid particles on and off bottom of an unbaffled vessel agitated by unsteadily forward-reverse rotating impeller, Fluid. Sci. Technol., 3, 282–291 (2008).

    Article  Google Scholar 

  18. F. L. Yang, S. J. Zhou, C. X. Zhang, G. M. Evans, and G. C. Wang, Study of the turbulent flow in an unbaffled stirred tank by detached eddy simulation, Chem. Eng. Commun., 200, 1347–1365 (2013).

    Article  Google Scholar 

  19. R. L. Bates, P. L. Fondy, and R. R. Corpstein, An examination of some geometric parameters of impeller power, Ind. Eng. Chem. Proc. Des. Dev., 2, 310–314 (1963).

    Article  Google Scholar 

  20. G. Montante, K. C. Lee, A. Brucato, and M. Yianneskis, Numerical simulations of the dependency of flow pattern on impeller clearance in stirred vessels, Chem. Eng. Sci., 56, 3751–3770 (2001).

    Article  Google Scholar 

  21. H. Ameur, M. Bouzit, and M. Helmaoui, Numerical study of fluid flow and power consumption in a stirred vessel with a Scaba 6SRGT impeller, Chem. Process Eng., 32, 351–366 (2011).

    Article  Google Scholar 

  22. V. B. Rewatkar, A. J. Deshpande, A. B. Pandit, and J. B. Joshi, Role of sparger design on gas dispersion in mechanically agitated gas–liquid contactors, Can. J. Chem. Eng., 71, 226–237 (1993).

    Article  Google Scholar 

  23. M. S. Puthli, V. K. Rathod, and A. B. Pandit, Gas–liquid mass transfer studies with triple impeller system on a laboratory scale bioreactor, Biochem. Eng. J., 23, 25–30 (2005).

    Article  Google Scholar 

  24. H. Djelal, F. Larher, G. Martin, and A. Amrane, Effect of the dissolved oxygen on the bioproduction of glycerol and ethanol by Hansenula anomala growing under salt stress conditions, J. Biotechnol., 125, 95–103 (2006).

    Article  Google Scholar 

  25. W. K. Lewis and W. G. Whitman, Principles of gas absorption, Ind. Eng. Chem., 16, 1215–1220 (1924).

    Article  Google Scholar 

  26. S. S. Patil, N. A. Deshmukh, and J. B. Joshi, Mass-transfer characteristics of surface aerators and gas-inducing impellers, Ind. Eng. Chem. Res., 43, 2765–2774 (2004).

    Article  Google Scholar 

  27. G. Ascanio, B. Castro, and E. Galindo, Measurement of power consumption in stirred vessels — A review, Chem. Eng. Res. Des., 82, 1282–1290 (2004).

    Article  Google Scholar 

  28. P. R. Gogate, A. A. C. M. Beenackers, and A. B. Pandit, Multiple-impeller systems with a special emphasis on bioreactors: A critical review, Biochem. Eng. J., 6, 109–144 (2000).

    Article  Google Scholar 

  29. R. L. King, R. A. Hiller, and G. B. Tatterson, Power consumption in a mixer, AIChE J., 34, 506–509 (1998).

    Article  Google Scholar 

  30. N. A. Deshmukh and J. B. Joshi, Surface aerators: power number, mass transfer coefficient, gas hold up profiles and flow patterns, Chem. Eng. Res. Des., 84, 977–992 (2006).

    Article  Google Scholar 

  31. D. J. Gray, R. E. Treybal, and S. M. Barnett, Mixing of single- and two-phase systems: Power consumption of impellers, AIChE J., 28, 195–199 (1982).

    Article  Google Scholar 

  32. M. W. Clark and T. Vermeulen, Incipient vortex formation in baffled agitated vessels, AIChE J., 10, 420–422 (1964).

    Article  Google Scholar 

  33. A. R. K. Rao and B. Kumar, Resistance characteristics of surface aerators, J. Hydraul. Eng.-ASCE, 135, No. 1, 38–44 (2009).

    Article  Google Scholar 

  34. S. Nagata, Mixing, Principles and Applications, Halsted Press, New York (1975).

    Google Scholar 

  35. H. T. Luong and B. Volesky, Mechanical power requirements of gas–liquid agitated systems, AIChE J., 25, 893–895 (1979).

    Article  Google Scholar 

  36. B. J. Michel and S. A. Miller, Power requirements of gas–liquid agitated systems, AIChE J., 8, 262–266 (1962).

    Article  Google Scholar 

  37. A. W. Nienow, D. J. Wisdom, and J. C. Middleton, The effect of scale and geometry on flooding recirculation and power in gassed stirred vessels, in: Proc. 2nd Europ. Conf. Mixing, BHRA, Cranefield, U.K. (1977), paper F-l .

  38. T. Moucha, V. Linek, and E. Prokopova, Gas hold-up, mixing time and gas-liquid volumetric mass transfer coefficient of various multiple-impeller configurations: Rushton turbine, pitched blade and Techmix impeller and their combinations, Chem. Eng. Sci, 58, 1839–1846 (2003).

    Article  Google Scholar 

  39. F. Kerdouss, A. Bannari, P. Proulx, R. Bannari, M. Skrga, and Y. Labrecque, Two-phase mass transfer coefficient prediction in stirred vessel with a CFD model, Comput. Chem. Eng., 32, 1943–1955 (2008).

    Article  Google Scholar 

  40. M. Elqotbi, S. D. Vlaev, L. Montastruc, and I. Nikov, CFD modelling of two-phase stirred bioreaction systems by segregated solution of the Euler-Euler model, Comput. Chem. Eng., 48, 113–120 (2013).

    Article  Google Scholar 

  41. A. R. Khopkar, G. R. Kasat, A. B. Pandit, and V. Ranade, CFD simulation of mixing in tall gas liquid stirred vessel: Role of local flow patterns, Chem. Eng. Sci., 61, 2921–2929 (2006).

    Article  Google Scholar 

  42. J. C. Scargiali, F. D'Orazio, F. Grisafi, and A. Brucato, Modelling and simulation of gas–liquid hydrodynamics in mechanically stirred tanks, Chem. Eng. Res. Des., 85, 637–646 (2007).

    Article  Google Scholar 

  43. V. Ranade, Computational Flow Modeling for Chemical Reactor Engineering, Academic Press, San Diego, USA (2002).

    Google Scholar 

  44. F. Kerdouss, A. Bannari, and P. Proulx, CFD modeling of gas dispersion and bubble size in a double turbine stirred tank, Chem. Eng. Sci., 61, 3313–3322 (2006).

    Article  Google Scholar 

  45. L. Xu, B. Yuan, H. Ni, and C. Chen, Numerical simulation of bubble column flows in churn-turbulent regime: comparison of bubble size models, Ind. Eng. Chem. Res., 52, 6794–6802 (2013).

    Article  Google Scholar 

  46. A. Bakker and H. E. A. Van Den Akker, A computational model for the gas–liquid flow in stirred reactors, Trans. IChemE, 72, 594–606 (1994).

    Google Scholar 

  47. B. J. Azzopardi, R. F. Mudde, S. Lo, H. Morvan, Y. Yan, and D. Zhao, Hydrodynamics of GasLiquid Reactors: Normal Operation and Upset Conditions, John Wiley & Sons, Hoboken, NJ (2011).

    Book  Google Scholar 

  48. A. Paglianti, G. Montante, and F. Magelli, AIChE J., 52, 426–437 (2006).

    Article  Google Scholar 

  49. P. V. Danckwerts, Significance of liquid-film coefficients in gas absorption, Ind. Eng. Chem., 43, 1460–1467 (1951).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bimlesh Kumar.

Additional information

Published in Inzhenerno-Fizicheskii Zhurnal, Vol. 88, No. 1, pp. 75–86, January–February, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Devi, T.T., Kumar, B. Design of a Gas–Liquid Unbaffled Stirred Tank with a Concave Blade Impeller. J Eng Phys Thermophy 88, 76–87 (2015). https://doi.org/10.1007/s10891-015-1169-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-015-1169-7

Keywords

Navigation