Advertisement

Design of a Gas–Liquid Unbaffled Stirred Tank with a Concave Blade Impeller

  • T. T. Devi
  • Bimlesh Kumar
Article

Experimental investigation of unbaffled multiphase (gas–liquid) stirred tanks is conducted with the use of a concave blade impeller to analyze mass transfer, gassed power, and gas holdup. The experiments are carried out with various impeller diameter to tank diameter ratios and impeller clearances. The design criterion for the mass transfer rate is proposed, and its prediction capability is found to be satisfactory. The results show that the gassed power is dependent on the impeller diameter to tank diameter ratio and impeller clearance. The design criteria for gassed power to ungassed power ratio and gas holdup are also introduced. Multiphase modeling is done by employing the computational fluid dynamics (CFD) techniques to observe the characteristic flow pattern transition and to carry out a qualitative analysis of the mass transfer rate.

Keywords

concave blade impeller gas holdup impeller clearance mass transfer power number stirred tank 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. S. Liu, J. Y. Wu, and K. P. Ho, Characterization of oxygen transfer conditions and their effects on phaffia rhodozyma growth and carotenoid production in shake-fl ask cultures, Biochem. Eng. J., 27, 331–335 (2006).CrossRefGoogle Scholar
  2. 2.
    P. F. F. Amaral, M. G. Freire, M. H. M. R. Leao, I. M. Marrucho, J. A. P. Coutinho, and M. A. Z. Coelho, Optimization of oxygen mass transfer in a multiphase bioreactor with perfluorodecalin as a second liquid phase, Biotechnol. Bioeng., 99, 588–598 (2008).CrossRefGoogle Scholar
  3. 3.
    A. Karimi, F. Golbabaei, M. Neghab, M. R. Mehrnia, K. Mohammad, M. R. Pourmand, and A. Nikpey, Investigation of oxygen transfer in a two-phase partition stirred tank bioreactor in the presence of silicone oil, Chem. Biochem. Eng. Q., 25, 209–219 (2011).Google Scholar
  4. 4.
    P. Chunmei, M. Jian, L. Xinhong, and G. Zhengming, Investigation of fluid flow in a dual Rushton impeller stirred tank using particle image velocimetry, Chin. J. Chem. Eng., 16, 693–699 (2008).CrossRefGoogle Scholar
  5. 5.
    R. Zadghaffari, J. S. Moghaddas, and J. Revstedt, Large-eddy simulation of turbulent flow in a stirred tank driven by a Rushton turbine, Comput. Fluids, 39, 1183–1190 (2010).CrossRefMATHGoogle Scholar
  6. 6.
    Z. Li, Y. Bao, and Z. Gao, PIV experiments and large eddy simulations of single-loop flow fields in Rushton turbine stirred tanks, Chem. Eng. Sci., 66, 1219–1231 (2011).CrossRefGoogle Scholar
  7. 7.
    M. Taghavi, R. Zadghaffari, J. Moghaddas, and Y. Moghaddas, Experimental and CFD investigation of power consumption in a dual Rushton turbine stirred tank, Chem. Eng. Res. Des., 89, 280–290 (2011).CrossRefGoogle Scholar
  8. 8.
    F. Saito, A. W. Nienow, S. Chatwin, and I. P. T. Moore, Power, gas dispersion and homogenization characteristics of Scaba SRGT and Rushton turbine impellers, J. Chem. Eng., 25, 281–287 (1992).CrossRefGoogle Scholar
  9. 9.
    M. Cooke, J. C. Middleton, and J. R. Bush, Bioreactor fluid dynamics, in: Proc. 2nd Bioreactor Conf., Cambridge, UK, BHRA (1988), pp. 37–64.Google Scholar
  10. 10.
    Z. D. Chen and J. J. J. Chen, Comparison of mass transfer performance for various single and twin impellers, Chem. Eng. Res. Des., 77, 104–109 (1999).CrossRefGoogle Scholar
  11. 11.
    B. H. Junker, Z. Mann, and G. Hunt, Retrofit of CD-6 (Smith) impeller in fermentation vessels, Appl. Biochem. Biotech., 89, 67–83 (2000).CrossRefGoogle Scholar
  12. 12.
    B. Mazzarotta, Comminution phenomena in stirred sugar suspensions, AIChE Symp. Ser., 89,112–117 (1993).Google Scholar
  13. 13.
    J. M. Rousseaux, H. Muhr, and E. Plasari, Mixing and micromixing times in the forced vortex region of unbaffled mixing devices, Can. J. Chem. Eng., 79, 697–707 (2001).CrossRefGoogle Scholar
  14. 14.
    L. E. Aloi and R. S. Cherry, Cellular response to agitation characterized by energy dissipation at the impeller tip, Chem. Eng. Sci., 51, 1523–1529 (1996).CrossRefGoogle Scholar
  15. 15.
    M. Assirelli, W. Bujalski, A. Eaglesham, and A. W. Nienow, Macro- and micromixing studies in an unbaffled vessel agitated by a Rushton turbine, Chem. Eng. Sci., 63, 35–46 (2008).CrossRefGoogle Scholar
  16. 16.
    F. Grisafi, A. Brucato, and L. Rizzuti, Solid–liquid mass transfer coefficient in mixing tanks: influence of side wall roughness, IChemE Symp. Ser., 136, 571–578 (1994).Google Scholar
  17. 17.
    M. Yoshida, A. Kimura, K. Yamagiwa, A. Ohkawa, and S. J. Tezura, Movement of solid particles on and off bottom of an unbaffled vessel agitated by unsteadily forward-reverse rotating impeller, Fluid. Sci. Technol., 3, 282–291 (2008).CrossRefGoogle Scholar
  18. 18.
    F. L. Yang, S. J. Zhou, C. X. Zhang, G. M. Evans, and G. C. Wang, Study of the turbulent flow in an unbaffled stirred tank by detached eddy simulation, Chem. Eng. Commun., 200, 1347–1365 (2013).CrossRefGoogle Scholar
  19. 19.
    R. L. Bates, P. L. Fondy, and R. R. Corpstein, An examination of some geometric parameters of impeller power, Ind. Eng. Chem. Proc. Des. Dev., 2, 310–314 (1963).CrossRefGoogle Scholar
  20. 20.
    G. Montante, K. C. Lee, A. Brucato, and M. Yianneskis, Numerical simulations of the dependency of flow pattern on impeller clearance in stirred vessels, Chem. Eng. Sci., 56, 3751–3770 (2001).CrossRefGoogle Scholar
  21. 21.
    H. Ameur, M. Bouzit, and M. Helmaoui, Numerical study of fluid flow and power consumption in a stirred vessel with a Scaba 6SRGT impeller, Chem. Process Eng., 32, 351–366 (2011).CrossRefGoogle Scholar
  22. 22.
    V. B. Rewatkar, A. J. Deshpande, A. B. Pandit, and J. B. Joshi, Role of sparger design on gas dispersion in mechanically agitated gas–liquid contactors, Can. J. Chem. Eng., 71, 226–237 (1993).CrossRefGoogle Scholar
  23. 23.
    M. S. Puthli, V. K. Rathod, and A. B. Pandit, Gas–liquid mass transfer studies with triple impeller system on a laboratory scale bioreactor, Biochem. Eng. J., 23, 25–30 (2005).CrossRefGoogle Scholar
  24. 24.
    H. Djelal, F. Larher, G. Martin, and A. Amrane, Effect of the dissolved oxygen on the bioproduction of glycerol and ethanol by Hansenula anomala growing under salt stress conditions, J. Biotechnol., 125, 95–103 (2006).CrossRefGoogle Scholar
  25. 25.
    W. K. Lewis and W. G. Whitman, Principles of gas absorption, Ind. Eng. Chem., 16, 1215–1220 (1924).CrossRefGoogle Scholar
  26. 26.
    S. S. Patil, N. A. Deshmukh, and J. B. Joshi, Mass-transfer characteristics of surface aerators and gas-inducing impellers, Ind. Eng. Chem. Res., 43, 2765–2774 (2004).CrossRefGoogle Scholar
  27. 27.
    G. Ascanio, B. Castro, and E. Galindo, Measurement of power consumption in stirred vessels — A review, Chem. Eng. Res. Des., 82, 1282–1290 (2004).CrossRefGoogle Scholar
  28. 28.
    P. R. Gogate, A. A. C. M. Beenackers, and A. B. Pandit, Multiple-impeller systems with a special emphasis on bioreactors: A critical review, Biochem. Eng. J., 6, 109–144 (2000).CrossRefGoogle Scholar
  29. 29.
    R. L. King, R. A. Hiller, and G. B. Tatterson, Power consumption in a mixer, AIChE J., 34, 506–509 (1998).CrossRefGoogle Scholar
  30. 30.
    N. A. Deshmukh and J. B. Joshi, Surface aerators: power number, mass transfer coefficient, gas hold up profiles and flow patterns, Chem. Eng. Res. Des., 84, 977–992 (2006).CrossRefGoogle Scholar
  31. 31.
    D. J. Gray, R. E. Treybal, and S. M. Barnett, Mixing of single- and two-phase systems: Power consumption of impellers, AIChE J., 28, 195–199 (1982).CrossRefGoogle Scholar
  32. 32.
    M. W. Clark and T. Vermeulen, Incipient vortex formation in baffled agitated vessels, AIChE J., 10, 420–422 (1964).CrossRefGoogle Scholar
  33. 33.
    A. R. K. Rao and B. Kumar, Resistance characteristics of surface aerators, J. Hydraul. Eng.-ASCE, 135, No. 1, 38–44 (2009).CrossRefGoogle Scholar
  34. 34.
    S. Nagata, Mixing, Principles and Applications, Halsted Press, New York (1975).Google Scholar
  35. 35.
    H. T. Luong and B. Volesky, Mechanical power requirements of gas–liquid agitated systems, AIChE J., 25, 893–895 (1979).CrossRefGoogle Scholar
  36. 36.
    B. J. Michel and S. A. Miller, Power requirements of gas–liquid agitated systems, AIChE J., 8, 262–266 (1962).CrossRefGoogle Scholar
  37. 37.
    A. W. Nienow, D. J. Wisdom, and J. C. Middleton, The effect of scale and geometry on flooding recirculation and power in gassed stirred vessels, in: Proc. 2nd Europ. Conf. Mixing, BHRA, Cranefield, U.K. (1977), paper F-l .Google Scholar
  38. 38.
    T. Moucha, V. Linek, and E. Prokopova, Gas hold-up, mixing time and gas-liquid volumetric mass transfer coefficient of various multiple-impeller configurations: Rushton turbine, pitched blade and Techmix impeller and their combinations, Chem. Eng. Sci, 58, 1839–1846 (2003).CrossRefGoogle Scholar
  39. 39.
    F. Kerdouss, A. Bannari, P. Proulx, R. Bannari, M. Skrga, and Y. Labrecque, Two-phase mass transfer coefficient prediction in stirred vessel with a CFD model, Comput. Chem. Eng., 32, 1943–1955 (2008).CrossRefGoogle Scholar
  40. 40.
    M. Elqotbi, S. D. Vlaev, L. Montastruc, and I. Nikov, CFD modelling of two-phase stirred bioreaction systems by segregated solution of the Euler-Euler model, Comput. Chem. Eng., 48, 113–120 (2013).CrossRefGoogle Scholar
  41. 41.
    A. R. Khopkar, G. R. Kasat, A. B. Pandit, and V. Ranade, CFD simulation of mixing in tall gas liquid stirred vessel: Role of local flow patterns, Chem. Eng. Sci., 61, 2921–2929 (2006).CrossRefGoogle Scholar
  42. 42.
    J. C. Scargiali, F. D'Orazio, F. Grisafi, and A. Brucato, Modelling and simulation of gas–liquid hydrodynamics in mechanically stirred tanks, Chem. Eng. Res. Des., 85, 637–646 (2007).CrossRefGoogle Scholar
  43. 43.
    V. Ranade, Computational Flow Modeling for Chemical Reactor Engineering, Academic Press, San Diego, USA (2002).Google Scholar
  44. 44.
    F. Kerdouss, A. Bannari, and P. Proulx, CFD modeling of gas dispersion and bubble size in a double turbine stirred tank, Chem. Eng. Sci., 61, 3313–3322 (2006).CrossRefGoogle Scholar
  45. 45.
    L. Xu, B. Yuan, H. Ni, and C. Chen, Numerical simulation of bubble column flows in churn-turbulent regime: comparison of bubble size models, Ind. Eng. Chem. Res., 52, 6794–6802 (2013).CrossRefGoogle Scholar
  46. 46.
    A. Bakker and H. E. A. Van Den Akker, A computational model for the gas–liquid flow in stirred reactors, Trans. IChemE, 72, 594–606 (1994).Google Scholar
  47. 47.
    B. J. Azzopardi, R. F. Mudde, S. Lo, H. Morvan, Y. Yan, and D. Zhao, Hydrodynamics of GasLiquid Reactors: Normal Operation and Upset Conditions, John Wiley & Sons, Hoboken, NJ (2011).CrossRefGoogle Scholar
  48. 48.
    A. Paglianti, G. Montante, and F. Magelli, AIChE J., 52, 426–437 (2006).CrossRefGoogle Scholar
  49. 49.
    P. V. Danckwerts, Significance of liquid-film coefficients in gas absorption, Ind. Eng. Chem., 43, 1460–1467 (1951).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Institute of Technology GuwahatiGuwahatiIndia

Personalised recommendations