Journal of Engineering Physics and Thermophysics

, Volume 87, Issue 6, pp 1463–1468 | Cite as

Latent Waves in Heterogeneous Media

  • V. S. Surov

The dynamics of latent waves, i.e., their reflection from a solid side and interaction with each other, has been investigated numerically within the framework of the heterogeneous-medium model with a gasdynamic core.


multivelocity multicomponent medium hyperbolic systems of equations latent waves numerical simulation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. S. Surov, Hyperbolic model of a multivelocity heterogeneous medium, Inzh.-Fiz. Zh., 85, No. 3, 495–502 (2012).Google Scholar
  2. 2.
    V. S. Surov, Hyperbolic models in the mechanics of heterogeneous media, Zh. Vych. Mat. Mat Fiz., 54, No. 1, 139–149 (2014).MathSciNetGoogle Scholar
  3. 3.
    J. W. Strutt (Lord Rayleight), The Theory of Sound, Vol. 2 [in Russian], OGIZ, Moscow (1944).Google Scholar
  4. 4.
    M. Baer and J. Nunziato, A two-phase mixture theory for deflagration-to-detonation transition (DDT) in reactive granular materials. Int. J. Multiphase Flow, 12, 861–889 (1986).CrossRefMATHGoogle Scholar
  5. 5.
    A. Zein, M. Hantke, and G. Warnecke, Modeling phase transition for compressible two-phase flows applied to metastable liquids, J. Comput. Phys., 229, 2964–2998 (2010).CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    V. F. Kuropatenko, Model of a multicomponent medium, Dokl. Ross. Akad. Nauk, 403, No. 6, 761–763 (2005).Google Scholar
  7. 7.
    G.-S. Yeom and K.-S. Chang, A modified HLLC-type Riemann solver for the compressible six-equation two-fluid model, Comput. Fluids, 76, 86–104 (2013).CrossRefMathSciNetGoogle Scholar
  8. 8.
    Ya. Z. Kleiman, On the propagation of weak-discontinuity waves in a multicomponent medium, Akust. Zh., 4, No. 3, 253–262 (1958).MathSciNetGoogle Scholar
  9. 9.
    V. S. Surov, Nodal method of characteristics for calculation of flows of a multicomponent heterogeneous medium, Inzh.-Fiz. Zh., 86, No. 5, 1088–1096 (2013).Google Scholar
  10. 10.
    V. S. Surov, Godunov method for calculation of flows of a multicomponent heterogeneous medium, Inzh.-Fiz. Zh., 87, No. 2, 367–375 (2014).Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.South-Ural State UniversityChelyabinskRussia

Personalised recommendations