Numerical Simulation of the Processes of Icing on Airfoils with Formation of a “Barrier” Ice

  • A. A. Prikhod’ko
  • S. V. Alekseenko

Software and methods allowing one to model the processes of formation of a “barrier” ice on the unprotected part of an airfoil have been developed with the use of the Reynolds-averaged Navier–Stokes equations for a compressible gas, which are closed with the aid of the Spalart–Allmaras model of turbulence. An inertial model is used to describe the motion of overcooled water droplets. In modeling the process of ice accretion, differential equations of mass, momentum, and energy conservation are used for each element of the surface. The initial equations are made discrete by means of the control volume approach. The influence of the height of ice accretions and of their location on the character of air–droplet flow past a NACA 0012 airfoil and on its aerodynamic characteristics has been analyzed.


icing airfoil Navier–Stokes equations model of turbulence control volume approach barrier ice aerodynamic characteristics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. P. Meshcheryakova, Design of Systems of Protecting Aircraft and Helicopters [in Russian], Mashinostroenie, Moscow (1977).Google Scholar
  2. 2.
    Recommendating Instruction RTs-AP33.68.33.77, Determination of the Correspondence of an Engine to the Requirements AP-33 Concerning the Ability of Its Operation under Conditions of Icing and Ice Ingestion into the Engine [in Russian], TsIAM, Moscow (2003).Google Scholar
  3. 3.
    M. B. Bragg, Aircraft aerodynamic effects due to large-droplet ice accretions, AIAA 34th Aerospace Sciences Meeting, Reno, NV, January 15–18, AIAA Paper, No. 0932 (1996).Google Scholar
  4. 4.
    S. Dutch, Natural and Applied Sciences.
  5. 5.
    M. Potapczuk, Numerical analysis of a NACA 0012 airfoil with leading edge ice accretions, AIAA Paper, No. 0101 (1987).Google Scholar
  6. 6.
    A. A. Prikhod’ko, Computer Technologies in Aerohydrodynamics and Heat/Mass Transfer [in Russian], Naukova Dumka, Kiev (2003).Google Scholar
  7. 7.
    S. C. Caruso, Development of an unstructured mesh/Navier–Stokes method for aerodynamics of aircraft with ice accretions, AIAA Paper, No. 0758 (1990).Google Scholar
  8. 8.
    S. C. Caruso and M. Farshchi, Automatic grid generation for iced airfoil flowfield predictions, AIAA Paper, No. 0415 (1992).Google Scholar
  9. 9.
    J. Dompierre, D. J. Cronin, Y. Bourgault, et al., Numerical simulation of performance degradation of ice contaminated airfoils, AIAA Paper, No. 2235 (1997).Google Scholar
  10. 10.
    S. Lee and M. B. Bragg, Effects of simulated spanwise ice shapes on airfoils: experimental investigation, AIAA Paper, No. 0092 (1999).Google Scholar
  11. 11.
    S. Lee, H. S. Kim, and M. B. Bragg, Investigation of factors that influence iced airfoil aerodynamics, AIAA Paper, No. 0099 (2000).Google Scholar
  12. 12.
    H. S. Kim and M. B. Bragg, Effect of leading-edge ice accretion geometry on airfoil aerodynamics, AIAA Paper, No. 3150 (1999).Google Scholar
  13. 13.
    T. Dunn and E. Loth, Effects of simulated spanwise ice shapes on airfoils: computational investigation, AIAA Paper, No. 0093 (1999).Google Scholar
  14. 14.
    S. Kumar and E. Loth, Aerodynamic simulations of airfoils with large-droplet ice shapes, in: Proc. 38th Aerospace Sci. Meeting and Exhibit, Reno NV, AIAA Paper, No. 0238 (2000).Google Scholar
  15. 15.
    R. I. Nigmatulin, Dynamics of Multiphase Media [in Russian], Vols. 1, 2, Nauka, Moscow (1987).Google Scholar
  16. 16.
    A. A. Prikhod’ko and S. V. Alekseenko, Numerical simulation of a transonic vapor–gas flow around a cylinder, Vestn. Dnepropetr. Univ., Mekhanika, 1, Issue 7, 55–66 (2003).Google Scholar
  17. 17.
    S. V. Alekseenko, Numerical Simulation of the Processes of Hydrodynamics and Heat/Mass Transfer in Regions with Free Boundaries, Candidate’s Dissertation (in Engineering), Dnepropetrovsk (2012).Google Scholar
  18. 18.
    A. A. Prikhod’ko and S. V. Alekseenko, Mathematical simulation of the processes of heat and mass transfer in the icing of airfoils, in: Proc. 6th Minsk Int. Heat Mass Transfer Forum “MIF–VI, ITMO im. A. V. Luikova NANB, Vol. 1, Minsk (2008), pp. 1–10.Google Scholar
  19. 19.
    A. A. Prikhod’ko and S. V. Alekseenko, Icing of airfoils. Simulation of an air–drop flow, Aviats.-Kosm. Tekh. Tekhnol., No. 4, 59–67 (2013).Google Scholar
  20. 20.
    P. R. Spalart and S. R. Allmaras, A one-equation turbulence model for aerodynamic flow, AIAA Paper, No. 0439 (1992).Google Scholar
  21. 21.
    G. S. Constantinescu, M. C. Chapelet, and K. D. Squires, Turbulence modeling applied to flow over a sphere, AIAA J., 41, No. 9, 1733–1743 (2003).CrossRefGoogle Scholar
  22. 22.
    A. A. Pilipenko, O. B. Polevoi, and A. A. Prikhod’ko, Numerical simulation of the effect of Mach number and angle of attack on the regimes of transonic turbulent flow past airfoils, Uchen. Zap. TsAGI, 43, No. 1, 1–31 (2012).CrossRefGoogle Scholar
  23. 23.
    P. L. Roe, Characteristic-based schemes for the Euler equations, Annu. Rev. Fluid Mech., 18, 337–365 (1986).CrossRefMathSciNetGoogle Scholar
  24. 24.
    G. Fortin, J. Laforte, and A. Beisswenger, Prediction of ice shapes on NACA 0012 2D airfoil, Anti-Icing Mater. Int. Lab., No. 2154 (2003).Google Scholar
  25. 25.
    Fortin G., Ilinca A., and Brandi V. A new roughness computation method and geometric accretion model for airfoil icing. J. Aircraft., 41, No. 1, 119–127 (2004).CrossRefGoogle Scholar
  26. 26.
    B. L. Messinger, Equilibrium temperature of an unheated icing surface as a function of airspeed, J. Aeronaut. Sci., 20, No. 1, 29–42 (1953).CrossRefGoogle Scholar
  27. 27.
    F. H. Lozowski, J. R. Stallabras, and P. F. Hearty, The icing of an unheated nonrotating cylinder in liquid water dropletice crystal clouds, National Research Council, Laboratory report No. LTR-LT-96 (1979).Google Scholar
  28. 28.
    Ice Accretion Simulation, AGARD-AR-344, Hull (1997).Google Scholar
  29. 29.
    W. B. Wright, Users manual for the improved NACA lewis ice accretion code LEWICE 1.6, Contractor Report NACA, May, 1995.Google Scholar
  30. 30.
    P. Louchez, G. Fortin, G. Mingione, and V. Brandi, Beads and rivulets modelling in ice accretion on a wing, in: Proc. 36th Aerospace Sci. “Meeting & Exhibit, American Institute of Aeronautics and Astronautics, Reno, Nevada (1998).Google Scholar
  31. 31.
    F. H. Ludlam, The heat economy of a rimed cylinder, Q. J. R. Meteor. Soc., 77, No. 1, 663–666 (1951).CrossRefGoogle Scholar
  32. 32.
    D. Guffond and T. Hedde, Prediction of ice accretion: Comparison between the 2D and 3D codes, La Recherche Aerospatiale, No. 2, 103–115 (1994).Google Scholar
  33. 33.
    A. P. Broeren, E. A. Whalen, and G. T. Busch, Aerodynamic simulation of runback ice accretion, J. Aircraft, 47, No. 3, 1641–1651 (2010).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Dnepropetrovsk National UniversityDnepropetrovskUkraine

Personalised recommendations