Advertisement

Laminar Nonisothermal Flow of a Viscous Fluid with Solid Particles Past a Rotating Circular Cylinder

  • I. V. Morenko
  • V. L. Fedyaev
Article

Unsteady nonisothermal traverse flow of an impurity-containing viscous fluid past a rotating circular cylinder has been investigated with account of the mechanical and thermal interaction of the carrier and dispersed phases. The processes occurring have been described mathematically with the Lagrange approach. The influence of the impurity on the flow pattern has been analyzed; the dependences of the drag coefficient, the lifting-force amplitude, and the Nusselt number of the cylinder on the relative rotational velocity of its surface have been determined.

Keywords

rotating circular cylinder viscous fluid with an impurity Lagrangian approach 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. Ya. Fabrikant (ed.), Current State of the Hydroaerodynamics of a Viscous Fluid. Review of Theories and Experimental Works on the Problems of a Boundary Layer, Turbulent Motion, and Motion in a Wake [in Russian], Vol. 1, Gos. Izd. IL, Moscow (1948).Google Scholar
  2. 2.
    N. Ya. Fabrikant, Aerodynamics. A General Course [in Russian], Nauka, Moscow(1964).Google Scholar
  3. 3.
    L. A. Dorfman, Hydrodynamic Resistance and Heat Transfer of Rotating Bodies [in Russian], Gos. Izd. Fiz.-Mat. Lit., Moscow (1960).Google Scholar
  4. 4.
    S. S. Kutateladze, Heat Transfer and Hydrodynamic Resistance: A Reference Book [in Russian], Énergoatomizdat, Moscow (1990).Google Scholar
  5. 5.
    G. H. Hu, D. J. Sun, X. Y. Yin, and B. G. Tong, Hopf bifurcation in wake behind a rotating and translating circular cylinder, Phys. Fluids, 8, No. 7, 1972–1974 (1996).CrossRefMATHGoogle Scholar
  6. 6.
    S. Kang, H. Choi, and S. Lee, Laminar flow past circular cylinder, Phys. Fluids, 11, No. 11, 3312–3321 (1999).CrossRefMATHGoogle Scholar
  7. 7.
    F. J. Barnes, Vortex shedding in the wake if a rotating circular cylinder at low Reynolds numbers, J. Phys. D: Appl. Phys., No. 33, 141–144 (2000).Google Scholar
  8. 8.
    D. Stojkovic, M. Breuer, and F. Durst, Effect of high rotation rates on the laminar flow around a circular cylinder, Phys. Fluids, 14, No. 9, 3160–3178 (2002).CrossRefMathSciNetGoogle Scholar
  9. 9.
    S. Mittal and B. Kumar, Flow past a rotating cylinder, J. Fluid Mech., 476, 303–334 (2003).MATHMathSciNetGoogle Scholar
  10. 10.
    I. V. Morenko and A. B. Mazo, Numerical simulation of the viscosity of the separated flow past a rotating circular, in: Proc. Second Int. Summer Scientific School "High Speed Hydrodynamics," June 27–July 3 2004, Cheboksary (2004), pp. 307–311.Google Scholar
  11. 11.
    A. B. Mazo and I. V. Morenko, Interaction of a viscous-fluid flow and a rotating circular cylinder, in: Continuum-Mechanics Models. Proc. N. I. Lobachevskii Math. Center [in Russian], Vol. 27, Izd. Kazansk. Matem. Obshch., Kazan (2004), pp. 161–171.Google Scholar
  12. 12.
    R. Akoury, M. Braza, R. Perrin, et al., The three-dimensional transition in the flow around a rotating cylinder, J. Fluid Mech., 607, 1–11 (2008).MATHGoogle Scholar
  13. 13.
    Y. T. Yan and Y. Q. Zu, Numerical simulation of heat transfer and fluid flow past a rotating isothermal cylinder — A LBM approach, Int. J. Heat Mass Transf., No. 51, 2519–2536 (2008).CrossRefMATHGoogle Scholar
  14. 14.
    J. Ghazanfarian and M. R. H. Nobari, A numerical study of convective heat transfer from a rotating cylinder with crossflow oscillation, Int. J. Heat Mass Transf., No. 52, 5402–5411 (2009).CrossRefMATHGoogle Scholar
  15. 15.
    A. A. Prikhod′ko and D. A. Redchits, Numerical simulation of unsteady detached flow of an incompressible viscous fluid past a rotating cylinder, Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza, No. 6, 32–39 (2009).Google Scholar
  16. 16.
    R. I. Nigmatulin, Dynamics of Multiphase Media [in Russian], Part I, Nauka, Moscow (1987).Google Scholar
  17. 17.
    A. N. Volkov and Yu. M. Tsirkunov, Influence of a dispersed impurity on the structure of an unsteady two-phase wake of the cylinder in transverse flow at moderate Reynolds numbers, Mat. Model., 15, No. 7, 98–110 (2003).MATHGoogle Scholar
  18. 18.
    I. V. Morenko and V. L. Fedyaev, Peculiaritiesoftwo-phaseflowpastacylinder, Ékol. Vestn. Nauch. Tsentr. Chernomorsk. Ékon. Sotr., No. 4, 52–58 (2010).Google Scholar
  19. 19.
    I. V. Morenko and V. L. Fedyaev, Nonisothermalflow of a monodisperse mixture past a circular cylinder, Teplov. Protsessy Tekh., 3, No. 6, 242–252 (2011).Google Scholar
  20. 20.
    G. F. Al-Sumaily, A. Nakayama, J. Sheridan, and M. C. Thompson, The effect of porous media particle size on forced convection from a circular cylinder without assuming local thermal equilibrium between phases, Int. J. Heat Mass Transf., No. 55, 3366–3378 (2012).Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Institute of Mechanics and Mechanical EngineeringKazan Scientific Center of the Russian Academy of SciencesKazan’Russia

Personalised recommendations