Skip to main content
Log in

A Novel Model for Predicting the Surface Tension of Binary Solutions

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

A new surface tension model based on the thermodynamic definition of the surface tension is suggested. By utilizing the Wilson equation to represent the excess Gibbs free energy, the three-parameter surface tension equation for binary liquid mixtures is derived. The validity of the equation is tested in terms of correlations for 160 binary systems. An overall percent average absolute deviation of 0.24% is obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. B. Lewis and H. R. C. Pratt, Oscillating droplets, Nature, 17, 1155–1156 (1953).

    Article  Google Scholar 

  2. B. L. Larsen, P. Rasmussen, and A. Fredenslund, A modified UNIFAC group-contribution model for prediction of phase equilibria and heats of mixing, Ind. Eng. Chem. Res., 26, 2274–2280 (1987).

    Article  Google Scholar 

  3. V. Bongiorno and H. T. Davis, Modified Van der Waals theory of fluid interfaces, Phys. Rev. A, 12, 2213–2224 (1975).

    Article  Google Scholar 

  4. D. B. Macleod, Relation between surface tension and density, Trans. Faraday Soc., 19, 38–46 (1923).

    Article  Google Scholar 

  5. F. B. Sprow and J. M.Prausnitz, Surface thermodynamics of liquid, Can. J. Chem. Eng., 45, 25–28 (1967).

    Article  Google Scholar 

  6. S. J. Nath, Surface tension of nonideal binary liquid mixtures as a function of composition, J. Colloid Interface Sci., 209, 116–122 (1999).

    Article  Google Scholar 

  7. A. A. Rafati and E. Ghasemian, Experimental and theoretical study of surface tension of binary mixtures of n-alkyl acetates + heptane, benzene, and toluene, J. Chem. Thermodyn., 41, 386–391 (2009).

    Article  Google Scholar 

  8. A. A. Rafati and E. Ghasemian, Study of surface tension and surface properties of binary alcohol/n-alkyl acetate mixtures, J. Colloid Interface Sci., 328, 385–390 (2008).

    Article  Google Scholar 

  9. G. M. Wilson, Vapor–liquid equilibrium. XI. A new expression for the excess free energy of mixing, J. Am. Chem. Soc., 86, 127–130 (1964).

    Article  Google Scholar 

  10. B. Giner, P. Cea, M. C. Lopez, F. M. Royo, and C. Lafuente, Surface tensions for isomeric chlorobutanes with isomeric butanols, J. Colloid Interface Sci., 275, 284–289 (2004).

    Article  Google Scholar 

  11. E. Calvo, M. Pintos, A. Amigo, and R. Bravo, Surface tension and density of mixtures of 1,3-dioxolane plus alkanols at 298.15 K: analysis under the extended Langmuir model, J. Colloid Interface Sci., 272, 438–443 (2004).

    Article  Google Scholar 

  12. E. Jimenez, M. Cabanas, L. Segade, S. Garcia-Garabal, and H. Casas, Excess volume, changes of refractive index and surface tension of binary 1,2-ethanediol + 1-propanol or 1-butanol mixtures at several temperatures, Fluid Phase Equilibr., 180, 151–164 (2001).

    Article  Google Scholar 

  13. G. F. Ouyang, L. Guizeng, C. Pan, Y. Y. Yang, Z. Q. Huang, and B. S. Kang, Excess molar volumes and surface tensions of xylene with isopropyl ether or methyl tert-butyl ether at 298.15 K, J. Chem. Eng. Data, 49, 732–734 (2004).

    Article  Google Scholar 

  14. G. F. Ouyang, Z. Q. Huang, J. M. Ou, W. Q. Wu, and B. S. Kang, Excess molar volumes and surface tensions of xylene with 2-propanol or 2-methyl-2-propanol at 298.15 K, J. Chem. Eng. Data, 48, 195–197 (2003).

    Article  Google Scholar 

  15. H. Kahl, T. Wadewitz, and J. Winkelmann, Surface tension of pure liquids and binary liquid mixtures, J. Chem. Eng. Data, 48, 580–586 (2003).

    Article  Google Scholar 

  16. D. K. Agarwal, R. Gopal, and S. Agarwal, Surface tensions of binary liquid mixtures of some polar and nonpolar liquids with dimethyl sulfoxide (Me2SO), J. Chem. Eng. Data, 24, 181–183 (1979).

    Article  Google Scholar 

  17. D. Gomez-Diaz, J. C. Mejuto, and J. M. Navaza, Physicochemical properties of liquid mixtures. 1. Viscosity, density, surface tension and refractive index of cyclohexane + 2,2,4-trimethylpentane binary liquid systems from 25 to 50oC, J. Chem. Eng. Data, 46, 720–724 (2001).

    Article  Google Scholar 

  18. L. I. Rolo, A. I. Caco, A. J. Queimada, I. M. Marrucho, and J. A. P. Coutinho, Surface tension of heptane, decane, hexadecane, eicosane, and some of their binary mixtures, J. Chem. Eng. Data, 47, 1442–1445 (2002).

    Article  Google Scholar 

  19. A. Garcia-Abuin, D. Gomez-Diaz, and L. R. Dolores, Density, speed of sound, refractive index, viscosity, surface tension, and excess volume of N-methyl-2-pyrrolidone-1-amino-2-propanol or bis(2-hydroxypropyl)amine from T = 293.15 to 323.15 K, J. Chem. Eng. Data, 56, 2904–2908 (2011).

    Article  Google Scholar 

  20. N. G. Tsierkezos, A. E. Kelarakis, and M. M. Palaiologou, Densities, viscosities, refractive indices, and surface tensions of dimethyl sulfoxide plus butyl acetate mixtures at 293.15, 303.15, and 313.15 K, J. Chem. Eng. Data, 45, 395–398 (2000).

    Article  Google Scholar 

  21. D. Papaioannou and C. Panayiotou, Surface tension of binary liquid mixtures, J. Colloid Interface Sci., 130, 432–438 (1989).

    Article  Google Scholar 

  22. H. Kahl, T. Wadewitz, and J. Winkelmann, Surface tension and interfacial tension of binary organic liquid mixtures, J. Chem. Eng. Data, 48, 1500–1507 (2003).

    Article  Google Scholar 

  23. S. Azizian and M. Hemmati, Surface tension of binary mixtures of ethanol plus ethylene glycol from 20 to 50oC, J. Chem. Eng. Data, 48, 662–663 (2003).

    Article  Google Scholar 

  24. L. Segade, J. J. De Llano, M. Dominguez-Perez, O. Cabeza, M. Cabanas, and E. Jimenez, Density, surface tension, and refractive index of octane + 1-alkanol mixtures at T = 298.15 K, J. Chem Eng. Data, 48, 1251–1255 (2003).

    Article  Google Scholar 

  25. B. M. S. Santos, A. G. M. Ferreira, and I. M. A Fonseca, Surface and interfacial tensions of the systems water + n-butyl acetate + methanol and water + n-pentyl acetate + methanol at 303.15 K, Fluid Phase Equilibr., 208, 1–21 (2003).

    Article  Google Scholar 

  26. V. T. Lam, H. D. Pfl ug, S. Murakami, and G. C. Benson, Excess enthalpies, volumes, and surface tensions of isomeric butanol and n-decanol mixtures, J. Chem. Eng. Data, 18, 63–66 (1973).

    Article  Google Scholar 

  27. K. Ridgway and P. A. Butler, Some physical properties of ternary system benzene–cyclohexane–n–hexane, J. Chem. Eng. Data, 12, 509–515 (1967).

    Article  Google Scholar 

  28. K. Nakanishi, T. Matsumoto, and M. Hayatsu, Surface tension of aqueous solutions of some glycols, J. Chem. Eng. Data, 16, 44–45 (1971).

    Article  Google Scholar 

  29. H. B. Evans and H. L. Clever, Surface tensions of binary mixtures of isooctane with benzene, cyclohexane plus n-dodecane at 30oC, J. Phys. Chem., 68, 3433–3435 (1964).

    Article  Google Scholar 

  30. D. Papaioannou, A. Magopoulou, M. Talilidou, and C. Panayiotou, Surface tensions of hydrogen-bonded systems, J. Colloid Interface Sci., 156, 52–55 (1993).

    Article  Google Scholar 

  31. H. P. Meissner and A. S. Michaels, Surface tensions of pure liquids and liquid mixtures, J. Ind. Eng. Chem., 41, 2782– 2787 (1949).

    Article  Google Scholar 

  32. S. M. Bardavid, G. C. Pedrosa, and M. Katz, Surface tensions of some nonelectrolyte binary liquid mixtures, J. Colloid Interface Sci., 165, 264–268 (1994).

    Article  Google Scholar 

  33. R. L. Schmidt, J. C. Randall, and H. L. Clever, Surface tension and density of binary hydrocarbon mixtures: benzene–nhexane and benzene–n-dodecane, J. Phys. Chem., 70, 3912–3916 (1966).

    Article  Google Scholar 

  34. H. L. Clever and C. C. Snead, Thermodynamics of liquid surfaces: surface tension of dimethyl sulfoxide and some dimethyl sulfoxideacetone mixtures, J. Phys. Chem., 67, 918–920 (1963).

    Article  Google Scholar 

  35. G. Vazquez, E. Alvarez, and J. M. Navaza, Surface tension of alcohol + water from 20 to 50°C, J. Chem. Eng. Data, 40, 611–614 (1995).

    Article  Google Scholar 

  36. G. Vazquez, E. Alvarez, R. Rendo, E. Romero, and J. M. Navaza, Surface tension of aqueous solutions of diethanolamine and triethanolamine from 25 to 50°C, J. Chem. Eng. Data, 41, 806–808 (1996).

    Article  Google Scholar 

  37. G. Vazquez, E. Alvarez, R. Rendo, and E. Romero, Surface tension of binary mixtures of water + monoethanolamine and water + 2-amino-2-methyl-1-propanol and tertiary mixtures of these amines with water from 25 to 50°C, J. Chem. Eng. Data, 42, 57–59 (1997)

    Article  Google Scholar 

  38. E. Alvarez, G. Vazquez, V. M. Sanchez, B. Sanjurjo, and J. M. Navaza, Surface tension of organic acids plus water binary mixtures from 20 to 50°C, J. Chem. Eng. Data, 42, 957–960 (1997).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Akbar Amooey.

Additional information

Published in Inzhenerno-Fizicheskii Zhurnal, Vol. 87, No. 3, pp. 517–523, May–June, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amooey, A.A. A Novel Model for Predicting the Surface Tension of Binary Solutions. J Eng Phys Thermophy 87, 533–540 (2014). https://doi.org/10.1007/s10891-014-1042-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-014-1042-0

Keywords

Navigation