Advertisement

Conditions of Stabilization of the Plasma Jet in a Vortex Chamber

  • G. V. Tkachenko
  • B. A. Uryukov
Article
  • 49 Downloads

The stabilization of a plasma jet in a vortex chamber as a result of the return of the turbulent moles coming out of this jet and back into it was analyzed with account for the nonuniformity of the circumferential velocity of the vortex, the heat transfer, and the appearance of associated masses in this chamber. For the purpose of determining the dependence of the critical Richardson number in the indicated chamber on the physical and thermodynamic parameters of the moles and the vortex flow in it, a system of equations was derived and solved numerically. The calculation results obtained were compared with the corresponding experimental data.

Keywords

vortex chamber stabilization of a plasma jet turbulent mole associated mass Richardson number 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. F. Zhukov, Yu. I. Sukhinin, and A. I. Yankovskii, Electric-arc heater with a gas-vortex interelectrode insert, in: Proc. 4 th All-Union Conference on Low-Temperature Plasma Generators, Ilim, Frunze (1974), pp. 104–107.Google Scholar
  2. 2.
    M. F. Zhukov, Yu. I. Sukhinin, and A. I. Yankovskii, Investigation of the aerodynamics of a plasmatron with a gas-vortex interelectrode insert, in: Proc. 4 th All-Union Conference on Low-Temperature Plasma Generators, Ilim, Frunze (1974), pp. 108–111.Google Scholar
  3. 3.
    V. A. Utovich, V. L. Novikov, and V. S. Peregudov, Investigation of the plasma ignition of coal dust and the stabilization of its combustion, Teploènergetika, No. 4, 20–23 (1990).Google Scholar
  4. 4.
    V. V. Drobchik, A. M. Shilyaev, and G. G. Volokitin, Experimental modeling of the interaction of a straight-through jet with a swirled air flow, Izv. Tomsk. Politekh. Univ., 215, No. 4, 12–20 (2009).Google Scholar
  5. 5.
    É. K. Dobrinskii, B. A. Uryukov, and A. É. Fridberg, Investigation of the stabilization of a plasma jet by a gas vortex, Izv. Sib. Otd. Akad. Nauk SSSR, Ser. Tekh. Nauk, No. 8, Issue 2, 42–49 (1979).Google Scholar
  6. 6.
    M. F. Zhukov, A. S. Koroteev, and B. A. Uryukov, Applied Dynamics of Thermal Plasma [in Russian], Nauka, Novosibirsk (1975).Google Scholar
  7. 7.
    É. P. Volchkov, G. R. Baldinov, V. I. Terekhov, and Yu. N. Tkach, Investigation of the mechanism of development of a jet in a swirled gas fl ow, in: V. E. Nakoryakov (Ed.), Generation of Electric Arc Plasma Flows (Collection of Papers), Inst. Teplofiz. Sib. Otd. Akad. Nauk SSSR, Novosibirsk (1987), pp. 184–199.Google Scholar
  8. 8.
    G. R. Baldinov, É. P. Volchkov, N. A. Dvornikov, et al., Gas-vortex stabilization of the jet in the near-axis zone of a plasma reactor, Inzh.-Fiz. Zh., 64, No. 2, 131–140 (1993).Google Scholar
  9. 9.
    B. A. Uryukov, On the stability of a plasma jet by a gas vortex, in: Physics and Chemistry of Solids, Mezhvuz. Sbornik Nauchn. Trudov, Krasnoyarsk. Gos. Univ., Krasnoyarsk (1978), pp. 71–77.Google Scholar
  10. 10.
    S. S. Kutateladze and M. A. Styrikovich, Hydrodynamics of Gas–Liquid Systems [in Russian], Énergiya, Moscow (1976).Google Scholar
  11. 11.
    A. V. Byalko, Laminar bubble chains. Logarithmically precise solution, Dokl. Ross. Akad. Nauk, 436, No. 6, 747–752 (2011).MATHGoogle Scholar
  12. 12.
    L. D. Landau and V. M. Lifshits, Hydrodynamics [in Russian], Nauka, Moscow (1988).Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.I. N. Frantsevich Institute of Material-Science ProblemsNational Academy of Sciences of UkraineKievUkraine

Personalised recommendations