Calculating the Flows of a One-Velocity Viscous Heat-Conducting Mixture

  • V. S. Surov

One-dimensional flows in foamy and bubble gas–liquid mixtures have been investigated by the nodal method of characteristics with account for their viscous and heat-conducting properties.


one-velocity multicomponent viscous heat-conducting mixture hyperbolic systems of partial differential equations numerical simulation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. S. Surov, On reflection of an air shock wave from a layer of foam, Teplofiz. Vys. Temp., 38, No. 1, 101–110 (2000).Google Scholar
  2. 2.
    V. S. Surov, Calculation of the interaction of an air shock wave with a porous material, Vestn. Chelyabinsk. Gos. Univ., 6, No. 1, 124–134 (1997).Google Scholar
  3. 3.
    V. S. Surov, Analysis of wave phenomena in gas–liquid media, Teplofiz. Vys. Temp., 36, No. 4, 624–630 (1998).Google Scholar
  4. 4.
    V. S. Surov, On location of contact surfaces in multifluid hydrodynamics, Inzh.-Fiz. Zh., 83, No. 3, 518–527 (2010).Google Scholar
  5. 5.
    V. S. Surov, Nodal method of characteristics in multifluid hydrodynamics, Inzh.-Fiz. Zh., 86, No. 5, 1080–1086 (2013).Google Scholar
  6. 6.
    E. Goncalves, Numerical study of expansion tube problems: Toward the simulation of cavitation, Comput. Fluids, 72, 1–19 (2013).CrossRefMathSciNetGoogle Scholar
  7. 7.
    S. Schoch, N. Nikiforakis, B. J. Lee, and R. Saurel, Multi-phase simulation of ammonium nitrate emulsion detonations, Combust. Flame, 160, 1883–1899 (2013).CrossRefGoogle Scholar
  8. 8.
    V. S. Surov, The Busemann flow for a one-velocity model of a heterogeneous medium, Inzh. Fiz. Zh., 80, No. 4, 45–51 (2007).Google Scholar
  9. 9.
    J. Wackers and B. Koren, A fully conservative model for compressible two-fluid flow, J. Numer. Meth. Fluids, 47, 1337–1343 (2005).CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    A. Murrone and H. Guillard, A five equation reduced model for compressible two phase flow problems, J. Comput. Phys., 202, 664–698 (2005).CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    V. Deledicque and M. V. Papalexandris, A conservative approximation to compressible two-phase flow models in the stiff mechanical relaxation limit, J. Comput. Phys., 227, 9241–9270 (2008).CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    R. Saurel, F. Petitpas, and R. A. Berry, Simple and efficient relaxation methods for interfaces separating compressible fluids, cavitating flows and shocks in multiphase mixtures, J. Comput. Phys., 228, 1678–1712 (2009).CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    J. J. Kreeft and B. Koren, A new formulation of Kapila’s five-equation model for compressible two-fluid flow and its numerical treatment, J. Comput. Phys., 229, 6220–6242 (2010).CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    C. Cattaneo, Surune forme de l’equation de la chaleur elinant le paradoxe d’une propagation instantance, CR. Acad. Sci., 247, 431–432 (1958).MathSciNetGoogle Scholar
  15. 15.
    A. A. Samarskii and Yu. P. Popov, Difference Methods of Solving Gas Dynamics Problems [in Russian], Nauka, Moscow (1980).Google Scholar
  16. 16.
    A. S. Lodge, Elastic Liquids [Russian translation], Nauka, Moscow (1969).Google Scholar
  17. 17.
    V. S. Surov, On a variant of the method of characteristics for calculating one-velocity flows of a multicomponent mixture, Inzh.-Fiz. Zh., 83, No. 2, 345–350 (2010).Google Scholar
  18. 18.
    V. S. Surov and E. N. Stepanenko, Grid method of characteristics for calculation of the flows of a one-velocity multicomponent heat-conducting medium, Vestn. Chelyabinsk. Gos. Univ., No. 24 (205), 15–22 (2010).Google Scholar
  19. 19.
    V. S. Surov, One-velocity model of a multicomponent heat-conducting medium, Inzh.-Fiz. Zh., 83, No. 1, 132–141 (2010).Google Scholar
  20. 20.
    A. G. Kulikovskii, N. V. Pogorelov, and A. Yu. Semenov, Mathematical Questions on the Numerical Solution of Hyperbolic Systems of Equations [in Russian], 2nd enlarged and revised edn., FIZMATLIT, Moscow (2012).Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.South Ural State UniversityChelyabinskRussia

Personalised recommendations