Journal of Engineering Physics and Thermophysics

, Volume 86, Issue 6, pp 1385–1394 | Cite as

A Contribution to the Problem of Initiation of a Combustion Source in an Oil-Saturated Bed

  • I. A. Koznacheev
  • K. V. Dobrego
Heat and Mass Transfer in Combustion Processes

The problem on in-situ self-ignition of an oil-saturated bed under the conditions of forced filtration of an oxygen-containing gas has been solved with analytical and numerical methods with account of the burnout of a deficient gas component. The influence of the burnout of this component and of convective removal of heat from the bed on the time of its self-ignition has been determined. Recommendations for the optimum regime of initiation of the self-ignition of the bed with account of variation of the blast flow rate and the oxygen content have been given.


thermal explosion self-ignition filtration in-situ combustion 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. B. Sheinman and K. K. Dubrovai, Underground gasification of Oil Pools and the Thermal Method of Oil Production [in Russian], ONTI, Moscow (1934).Google Scholar
  2. 2.
    A. A. Bokserman, Thermal gaseous method of raising oil recovery, Georesursy, 22, No. 3, 18–20 (2007).Google Scholar
  3. 3.
    I. S. Charnyi, Undergroud Hydro- and Gas-Dynamics [in Russian], Gostoptekhizdat, Moscow (1963).Google Scholar
  4. 4.
    L. I. Rubinshtein, Temperature Fields in Oil Pools [in Russian], Nedra, Moscow (1972).Google Scholar
  5. 5.
    R. Kh. Muslimov, K. M. Musin, and M. M. Musin, Experience in the Use of Thermal Methods of Oil Deposit Development in Tatarstan [in Russian], Novoe znanie, Kazan’ (2000).Google Scholar
  6. 6.
    A. P. Aldushin and B. S. Seplyarskii, On analysis of regimes of in-situ combustion, Dokl. Akad. Nauk SSSR, 255, No. 3, 616–620 (1980).Google Scholar
  7. 7.
    I. I. Bogdanov and L. A. Chudov, Numerical Investigation of the Initial Stage and Developed Regimes of In-Situ Combustion, Preprint No. 227 of the Institute for Problems of Mechanics, Izd. Otdel IPM, Moscow (1983).Google Scholar
  8. 8.
    B. V. Novozhilov, N. G. Samoilenko, and G. B. Manelis, Conditions of thermal explosion in forced convection of a reactive mixture, Fiz. Goreniya Vzryva, 41, No. 5, 49–54 (2005).Google Scholar
  9. 9.
    A. V. Pivushkov, N. I. Peregudov, and N. G. Samoilenko, Regime of ignition of heterogeneous systems, Khim. Fiz., 24, No. 2, 82–87 (2005).Google Scholar
  10. 10.
    R. S. Burkina, In-situ thermal ignition of a reactive gas in an inert porous medium, Fiz. Goreniya Vzryva, 41, No. 5, 41–48 (2005).Google Scholar
  11. 11.
    R. S. Burkina and V. G. Prokof’ev, Critical conditions for thermal explosion of a porous layer, Fiz. Goreniya Vzryva, 44, No. 3, 50–60 (2008).Google Scholar
  12. 12.
    Ya. B. Zel’dovich, G. I. Barenblatt, V. B. Librovich, and G. M. Makhviladze, Mathematical Theory of Combustion and Explosion [in Russian], Nauka, Moscow (1980).Google Scholar
  13. 13.
    I. Y. Akkutlu and Y. C. Yortsos, The dynamics of in-situ combustion fronts in porous media, Combust. Flame, 134, No. 3, 229–247 (2003).CrossRefGoogle Scholar
  14. 14.
    K. V. Dobrego, I. M. Kozlov, N. N. Gnezdilov, and V. V. Vasil’ev, 2DBurner — a Package of Programs for Modeling Filtration Combustion and Gas-Phase Nonstationary Flame Facilities, Preprint No. 1 of the A. V. Luikov Heat and Mass Transfer Institute, ITMO NANB, Minsk (2004).Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.A.V. Luikov Heat and Mass Transfer Institute, National Academy of Sciences of BelarusMinskBelarus

Personalised recommendations