Journal of Engineering Physics and Thermophysics

, Volume 86, Issue 5, pp 1160–1170 | Cite as

Nodal method of characteristics for calculating flows of a multivelocity heterogeneous medium

  • V. S. Surov

This paper describes a nodal method of characteristics intended for integrating one-dimensional equations of the model of a multivelocity multicomponent mixture with a gas-dynamic spatial grid.


multivelocity multicomponent medium hyperbolic system of equations nodal method of characteristics numerical modeling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Sauer, Compressible Fluid Flows [Russian translation], IL, Moscow (1954).Google Scholar
  2. 2.
    V. S. Surov, Hyperbolic model of a multivelocity heterogeneous medium, Inzh.-Fiz. Zh., 85, No. 3, 495–502 (2012).Google Scholar
  3. 3.
    V. S. Surov, On one variant of the method of characteristics for calculating single-velocity flows of a multicomponent mixture, Inzh.-Fiz. Zh., 83, No. 2, 345–350 (2010).Google Scholar
  4. 4.
    V. S. Surov and E. N. Stepanenko, The grid method of characteristics for calculating flows of a single-velocity multicomponent heat-conducting medium, Vestn. Chelyabinsk. Univ., Ser. Fiz. Issue 8, No. 24 (205), 15–22 (2010).Google Scholar
  5. 5.
    G. M. Lyakhov, V. N. Okhitin, and F. G. Chistov, Shock waves in grounds and in water in the vicinity of the explosion site, Prikl. Mekh. Tekh. Fiz., No. 3, 151–159 (1972).Google Scholar
  6. 6.
    N. É. Khoskin, The method of characteristics for solving the equations of one-dimensional unsteady flow, in: Computational Methods in Hydrodynamics (Collection of Papers) [in Russian], Mir, Moscow (1967).Google Scholar
  7. 7.
    A. P. Reverberi, P. Bagnerini, L. Maga, and A. G. Bruzzone, On the non-linear Maxwell–Cattaneo equation with nonconstant diffusivity: Shock and discontinuity waves, Int. J. Heat Mass Transf., 51, 5327–5332 (2008).CrossRefMATHGoogle Scholar
  8. 8.
    V. S. Surov, The single-velocity model of a heterogeneous medium with a hyperbolic adiabatic core, Zh. Vych. Mat. Mat. Fiz., 48, No. 6, 1111–1125 (2008).MathSciNetMATHGoogle Scholar
  9. 9.
    G. B. Wallis, One-Dimensional Two-Phase Flows [Russian translation], Mir, Moscow (1972).Google Scholar
  10. 10.
    A. G. Kulikovskii, N. V. Pogorelov, and A. Yu. Semenov, Mathematical Questions of the Numerical Solution of Hyperbolic Systems of Equations [in Russian], Fizmatlit, Moscow (2001).Google Scholar
  11. 11.
    J. Rayleigh, Theory of Sound [Russian translation], Vol. 2, Gos. Izd. Tekhn.-Teor. Lit., Moscow (1944).Google Scholar
  12. 12.
    R. I. Nigmatulin, Dynamics of Multiphase Media [in Russian], Nauka, Moscow (1987).Google Scholar
  13. 13.
    V. S. Surov, Self-similar running waves in multicomponent viscous heat-conducting media, Inzh.-Fiz. Zh., 86, No. 3, 557–566 (2013).Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.South-Ural State UniversityChelyabinskRussia

Personalised recommendations