Advertisement

Journal of Engineering Physics and Thermophysics

, Volume 86, Issue 5, pp 1002–1007 | Cite as

Methane-to-hydrogen conversion in a reversible flow filtration combustion reactor at a high pressure

  • Yu. M. Dmitrenko
  • P. A. Klyovan
Article

The noncatalytic process of partial oxidation of methane to syngas in a reversible flow filtration combustion reactor at high pressures has been considered. The influence of the operating pressure in the reactor on the main parameters of the conversion process — the maximum temperature in the combustion wave and the composition of reaction products — has been investigated experimentally. Investigations were carried out for fuel mixtures of different calorific powers at pressures of up to 6.0 bars. It has been shown that at a fixed value of the specific mass flow of the fuel mixture the efficiency of the process of methane-to-syngas conversion decreases with increasing pressure in the reactor.

Keywords

conversion of methane syngas partial oxidation reaction superadiabatic effect filtration combustion wave inert porous packed bed reversible reactor 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. A. Pena, J. P. Gomez, and J. L. G. Fierro, New catalytic routs for syngas and hydrogen production, Appl. Catal. A: Gen., 144, Nos. 1–2, 7–57 (1996).CrossRefGoogle Scholar
  2. 2.
    S. Ahmed and M. Krumpelt, Hydrogen from hydrocarbon fuels for fuel cells, Int. J. Hydrogen Energy, 26, No. 4, 291–301 (2001).CrossRefGoogle Scholar
  3. 3.
    M. A. Rosen, Thermodynamic comparison of hydrogen production processes, Int. J. Hydrogen Energy, 21, No. 5, 349–365 (1996).CrossRefGoogle Scholar
  4. 4.
    M. A. Rosen and S. Scott, Comparative efficiency assessment for a range of hydrogen production processes, Int. J. Hydrogen Energy, 23, No. 8, 653–659 (1998).CrossRefGoogle Scholar
  5. 5.
    S. Freni, J. Calogero, and S. Cavallaro, Hydrogen production from methane through catalytic partial oxidation reactions, J. Power Sources, 87, 28–38 (2000).CrossRefGoogle Scholar
  6. 6.
    A. P. Aldushin and B. S. Sklyarskii, Propagation of the exothermal reaction wave in a porous medium blown through by a gas, Dokl. Akad. Nauk SSSR, 241, No. 1, 72–75 (1978).Google Scholar
  7. 7.
    A. P. Aldushin and A. G. Merzhanov, The theory of filtration combustion: general notions and the state of the art, in: Yu. Sh. Matros (Ed.), Propagation of Thermal Waves in Heterogeneous Media [in Russian], Nauka, Novosibirsk (1988), pp. 9–52.Google Scholar
  8. 8.
    Yu. M. Laevskii and V. S. Babkin, Filtration combustion, of gases, in: Yu. Sh. Matros (Ed.), Propagation of Thermal Waves in Heterogeneous Media (Collection of Papers) [in Russian], Nauka, Novosibirsk (1988), pp. 108–145.Google Scholar
  9. 9.
    L. A. Kennedy, A. A. Fridman, and A. A. Saveliev, Superadiabatic combustion in porous media: Wave propagation, instabilities, new type of chemical reactor, Int. J. Fluid Mech. Res., 22, 1–26 (1995).MathSciNetGoogle Scholar
  10. 10.
    S. I. Fut'ko and S. A. Zhdanok, The Chemistry of Filtration Combustion of Gases [in Russian], Belaruskaya Navuka, Minsk (2004).Google Scholar
  11. 11.
    V. V. Gavrilyuk, Yu. M. Dmitrenko, S. A. Zhdanok, et al., Investigation of the process of methane-to-hydrogen conversion in the regime of a solitary fi ltration combustion wave, in: Proc. 4th Minsk Int. Forum "Heat and Mass Transfer–MIF-2000," Vol. 4, Minsk (2000), pp. 21–31.Google Scholar
  12. 12.
    V. V. Gavrilyuk, Yu. M. Dmitrenko,V. G. Minkina, et al., Investigation of the process of methane-to-hydrogen conversion under the conditions of superadiabatic filtration combustion, Teor. Osn. Khim. Tekhnol., 35, No. 6, 627–635 (2001).Google Scholar
  13. 13.
    R. Dhamrat and J. Ellzey, Numerical and experimental study of the conversion of methane to hydrogen in a porous media reactor, Combust. Flame, 144, No. 4, 698–709 (2006).CrossRefGoogle Scholar
  14. 14.
    Yu. M. Dmitrenko, S. A. Zhdanok, R. A. Klyovan, V. G. Minkina, Methane-to-hydrogen conversion in the filtration combustion wave of rich methane–air mixtures, Inzh.-Fiz. Zh., 80, No. 2, 90–95 (2007).Google Scholar
  15. 15.
    Yu. M. Dmitrenko, V. V. Gavrilyuk, V. G. Minkina, et al., Study of methane-to-hydrogen conversion under fi ltration combustion, in: Proc. IV Int. School-Seminar "Nonequilibrium Processes and Their Applications," Minsk (1998), pp. 170–173.Google Scholar
  16. 16.
    J. G. Hoffman, R. Echigo, H. Yoshida, and S. Tada, Experimental study on combustion in a porous media with a reciprocating flow system, Combust. Flame, 111, Nos. 1–2, 32–46 (1997).CrossRefGoogle Scholar
  17. 17.
    J. G. Hoffman, R. Echigo, S. Tada, and H. Yoshida, Analytic study on flammable limits of reciprocating superadiabatic combustion in porous media, in: Proc. VIII Int. Symp. on Transport Phenomena in Combustion, San Francisco, USA (1995), pp. 1–45.Google Scholar
  18. 18.
    M. K. Drayton, A. A. Saveliev, L. A. Kennedy, et al., Syngas production using superadiabatic combustion of ultra-rich methane–air mixtures, in: Proc. XXVII Symp. on Combustion, The Combustion Institute, Boulder, Colorado (1998), pp. 1361–1367.Google Scholar
  19. 19.
    Yu. M. Dmitrenko and R. A. Klevan, Hydrogen production in reversible flow filtration combustion reactor, in: Int. Sci. Workshop "Nonequilibrium Processes and Their Applications in Combustion and Plasma Based Technologies," Minsk (2008), pp. 97–101.Google Scholar
  20. 20.
    Yu. M. Dmitrenko and R. A. Klyovan, Nitrogen production in a reversible flow filtration combustion reactor, Inzh.-Fiz. Zh., 84, No. 6, 1206–1212 (2011).Google Scholar
  21. 21.
    K. V. Dobrego and S. A. Zhdanok, The Physics of Filtration Combustion of Gases [in Russian], ITMO NANB, Minsk (2020).Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.A.V. Luikov Heat and Mass Transfer InstituteNational Academy of Sciences of BelarusMinskBelarus

Personalised recommendations