Advertisement

Mathematical model of a nonlocal medium with internal state parameters

  • V. S. Zarubin
  • G. N. Kuvyrkin
  • I. Yu. Savel′eva
Article

Using the relations of the rational thermodynamics of irreversible processes with internal state parameters, a mathematical model of a nonlocal continuous medium is suggested and examples of calculations are presented.

Keywords

internal state parameters nonlocal continuous medium heat conduction equation structural element 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Onami, S. Ivasimidzu, K. Génka, et al., Introduction to Micromechanics [Russian translation], Metallurgiya, Moscow (1987).Google Scholar
  2. 2.
    V. S. Zarubin and G. N. Kuvyrkin, Utilization of structural parameters to investigate the thermostress state of a deformed body under pulse heating, Inzh.-Fiz. Zh., 54, No. 3, 468–476 (1988).Google Scholar
  3. 3.
    V. S. Zarubin and G. N. Kuvyrkin, Characteristic features of the thermally stressed state of a deformable body subjected to pulse heating, Ivz. Akad. Nauk SSSR, Mekh. Tverd. Tela, No. 1, 127–132 (1989).Google Scholar
  4. 4.
    G. N. Kuvyrkin, Thermodynamic model of the process of nonstationary heat conduction in a solid body, Dokl. Ross. Akad. Nauk, 364, No. 5, 614–616 (1999).Google Scholar
  5. 5.
    V. S. Zarubin and G. N. Kuvyrkin, Mathematical modeling of thermomechanical processes in aircraft structures, Inzh.-Fiz. Zh., 73, No. 1, 138–144 (2000).Google Scholar
  6. 6.
    V. S. Zarubin and G. N. Kuvyrkin, Mathematical modeling of thermomechanical processes on exposure to intense heating, Teplofi z. Vysok. Temp., 41, No. 2, 300–309 (2003).Google Scholar
  7. 7.
    V. S. Zarubin and G. N. Kuvyrkin, Mathematical models of the thermomechanics of a relaxing solid body, Ivz. Akad. Nauk SSSR, Mekh. Tverd. Tela, No. 2, 114–124 (2012).Google Scholar
  8. 8.
    A. C. Eringen, Nonlocal Continuum Field Theories, Springer-Verlag, New York–Berlin–Heidelberg (2002).MATHGoogle Scholar
  9. 9.
    V. S. Zarubin and G. N. Kuvyrkin, Mathematical Models of the Mechanics and Electrodynamics of a Continuous Medium [in Russian], Izd. MGTU im. N. É. Baumana, Moscow (2008).Google Scholar
  10. 10.
    G. N. Kuvyrkin and I. Yu. Savel’eva, Mathematical model of the thermal conductivity of new structural materials, Vestn. MGTU im. N. É. Baumana, Ser. Estestv. Nauki, No. 3, 72–85 (2010).Google Scholar
  11. 11.
    C. Truesdell, A First Course in Rational Continuum Mechanics [Russian translation], Mir, Moscow (1975).Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • V. S. Zarubin
    • 1
  • G. N. Kuvyrkin
    • 1
  • I. Yu. Savel′eva
    • 1
  1. 1.N. É. Bauman Moscow State Technical UniversityMoscowRussia

Personalised recommendations