Advertisement

Computational Investigation of Heat and Mass Transfer Processes in a Gel-Like Fuel Ignited by a Limited-Capacity Source

  • G. V. Kuznetsov
  • P. A. Strizhak
Article

We have carried out a computational investigation of the interrelated processes of heat and mass transfer, exothermal (crystallization) and endothermal (melting and evaporation) phase transitions, and chemical reactions resulting from ignition of a gel-like condensed substance. The dependence of the main integral characteristic of the process — the ignition delay time — on the temperature of the local heating source has been established. Limiting ignition conditions have been revealed. The position of the zone of the leading oxidation reaction relative to the interface between the heated particle and the fuel has been determined. A comparison has been made between the ignition conditions of condensed substances in different aggregate states under local heating.

Keywords

heat and mass transfer melting evaporation crystallization oxidation ignition gel-like fuel heated particle 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. E. Fortov and I. T. Yakubov, Nonideal Plasma [in Russian], Énergoatomizdat, Moscow (1994).Google Scholar
  2. 2.
    A. Chaboki, S. Zelenac, and B. Jsle, Recent advances in electrothermal-chemical gun propulsion at united defense, IEEE Trans. Magn., 33, No. 1, 284–288 (1997).CrossRefGoogle Scholar
  3. 3.
    S. V. Sinyaev, S. A. Ostapenko, and V. V. Fomenko, Electropulse dispersion of metallic elements in gel-like and suspension fluids, in: Fundamental and Applied Problems of Contemporary Mechanics [in Russian], Izd. Tomsk. Politekh. Univ., Tomsk (2000), pp. 167–168 (2000).Google Scholar
  4. 4.
    O. S. Vaulina, K. G. Adamovich, O. F. Petrov, and V. E. Fortov, Analysis of the mass transfer processes in nonideal dissipative systems (experiments in a dust plasma), Zh. Éksp. Teor. Fiz., 139, No. 3, 554–567 (2011).Google Scholar
  5. 5.
    V. V. Barzykin, U. I. Gol’dshleger, and A. G. Merzhanov, Ignition of condensed substances by a disperse flow, Dokl. Akad. Nauk SSSR, 191, 111–114 (1970).Google Scholar
  6. 6.
    V. V. Barzykin, U. I. Gol’dshleger, and A. G. Merzhanov, On the mechanisms and laws of ignition of condensed systems by a disperse flow, Fiz. Goreniya Vzryva, 7, No. 3, 319–332 (1971).Google Scholar
  7. 7.
    V. V. Barzykin, U. I. Gol’dshleger, and V. I. Rozenband, On some laws of ignition of condensed substances by a disperse flow, Fiz. Goreniya Vzryva, 7, No. 1, 61–64 (1971).Google Scholar
  8. 8.
    V. V. Barzykin, U. I. Gol’dshleger, and K. V. Pribytkina, Ignition of condensed explosives by a red-hot body of finite dimensions, Fiz. Goreniya Vzryva, 9, No. 1, 119–123 (1973).Google Scholar
  9. 9.
    G. V. Kuznetsov and P. A. Strizhak, Gas-phase ignition of the film of a liquid condensed substance by a metal particle heated to high temperatures under mixed-convection conditions, Inzh.-Fiz. Zh., 82, No. 6, 1052–1058 (2009).Google Scholar
  10. 10.
    G. V. Kuznetsov and P. A. Strizhak, Transient heat and mass transfer at the ignition of vapor and gas mixture by a moving hot particle, Int. J. Heat Mass Transfer, 53, Issues 5–6, 923–930 (2010).MATHCrossRefGoogle Scholar
  11. 11.
    A. V. Zakharevich and P. A. Strizhak, Fire hazard arising from the interaction of limited heat-content sources with flammable fluids, Pozharn. Bezopasn., No. 4, 70–75 (2011).Google Scholar
  12. 12.
    P. A. Strizhak, Ignition of liquid combustibles and flammable substances by typical limited-capacity sources, Pozharovzryvobezopasnost’, 20, No. 11, 11–27 (2011).Google Scholar
  13. 13.
    G. V. Kuznetsov, G. Ya. Mamontov, and G. V. Taratushkina, Numerical simulation of the ignition of a condensed substance by a particle heated to high temperatures, Fiz. Goreniya Vzryva, 40, No. 1, 78–85 (2004).Google Scholar
  14. 14.
    G. V. Kuznetsov, G. Ya. Mamontov, and G. V. Taratushkina, Ignition of a condensed substance by a particle, Khim. Fiz., 24, No. 3, 67–72 (2004).Google Scholar
  15. 15.
    R. S. Burkina and E. A. Mikova, High-temperature ignition of a reactive substance by a hot inert particle with a finite heat content, Fiz. Goreniya Vzryva, 45, No. 2, 40–47 (2009).Google Scholar
  16. 16.
    A. V. Zakharevich, G. V. Kuznetsov, and V. I. Maksimov, Ignition of model mixed fuel compositions by a single particle heated to high temperatures, Fiz. Goreniya Vzryva, 44, No. 5, 54–57 (2008).Google Scholar
  17. 17.
    D. O. Glushkov, G. V. Kuznetsov, and P. A. Strizhak, Numerical simulation of the solid-phase ignition of metallized condensed matter by a particle heated to high temperatures, Khim. Fiz., 30, No. 12, 35–41 (2011).Google Scholar
  18. 18.
    D. O. Glushkov and P. A. Strizhak, Heat and mass transfer at ignition of solid condensed substance with relatively low calorific power by a local energy source, J. Eng. Thermophys., 21, No. 1, 69–77 (2012).CrossRefGoogle Scholar
  19. 19.
    D. O. Glushkov and P. A. Strizhak, Ignition of a polymeric material by a of limited-capacity source, Pozharovzryvobezopasnost’, 20, No. 9, 3–8 (2011).Google Scholar
  20. 20.
    D. O. Glushkov and P. A. Strizhak, Ignition of a polymeric material by a metal particle heated to high temperatures under the conditions of convective heat and mass transfer, Pozharovzryvobezopasnost’, 20, No. 12, 15–22 (2011).Google Scholar
  21. 21.
    D. O. Glushkov and P. A. Strizhak, Convective heat and mass transfer on ignition of a polymeric material by a local heating source, Butl. Soobshch., 29, No. 1, 99–111 (2012).Google Scholar
  22. 22.
    G. V. Kuznetsov and P. A. Strizhak, Heat and mass transfer on hot-particle ignition of liquid-fuel vapors entering the ambient air from the surface of a fabric impregnated with the fuel, Inzh.-Fiz. Zh., 82, No. 3, 454–460 (2009).Google Scholar
  23. 23.
    G. V. Kuznetsov and P. A. Strizhak, Features of the gas-phase ignition of a mixture of kerosene vapors and air by a steel wire heated to high temperatures, Inzh.-Fiz. Zh., 82, No. 6, 1046–1051 (2009).Google Scholar
  24. 24.
    G. V. Kuznetsov and P. A. Strizhak, Ignition of a vapor-gas mixture by a moving small-size heating sources, Khim. Fiz., 29, No. 2, 29–37 (2010).Google Scholar
  25. 25.
    G. V. Kuznetsov and P. A. Strizhak, Ignition of Locally Heated Condensed Substances [in Russian], Izd. Sib. Otd. Ross. Akad. Nauk, Novosibirsk (2010).Google Scholar
  26. 26.
    L. F. Audrieth and B. A. Ogg, The Chemistry of Hydrazine, New York (1951).Google Scholar
  27. 27.
    Ya. M. Paushkin and A. Z. Chulkov, Rocket Fuels [in Russian], Mir, Moscow (1975).Google Scholar
  28. 28.
    B. G. Valiev, Yu. L. Dremin, S. N. Kravchenko, and V. M. Lopatin, A Method of Obtaining Gel-Like Rocket Monofuel, RF Patent No. 2005105226/06. Published 24.02.2005.Google Scholar
  29. 29.
    G. V. Kuznetsov, D. O. Glushkov, and P. A. Strizhak, Influence of the shape of a local energy source on the conditions of ignition of a structurally inhomogeneous solid condensed substance, Khim. Fiz. Mezoskop., 14, No. 3, 334–341 (2012).Google Scholar
  30. 30.
    G. V. Kuznetsov and P. A. Strizhak, Influence of the shape of a superheated particle on the gas-phase ignition of the film of a liquid condensed substance, Khim. Fiz., 29, No. 3, 1–8 (2010).Google Scholar
  31. 31.
    G. V. Kuznetsov and P. A. Strizhak, On peculiarities of heat and mass transfer in a hot metal particle–liquid fuel condensed substance–air system, J. Eng. Thermophys., 18, No. 3, 241–248 (2009).CrossRefGoogle Scholar
  32. 32.
    V. N. Kondrat’ev and E. E. Nikitin, Rate Constants of Gas-Phase Reactions: Handbook [in Russian], Nauka, (1971).Google Scholar
  33. 33.
    V. N. Kondrat’ev and E. E. Nikitin, Kinetics and Mechanism of Gas-Phase Reactions [in Russian], Nauka, Moscow (1974).Google Scholar
  34. 34.
    G. V. Kuznetsov and P. A. Strizhak, Ignition of liquid hydrocarbon fuels by a red-hot single particle, Izv. Tomsk. Politekh. Univ., 312, No. 4, 5–9 (2008).Google Scholar
  35. 35.
    O. V. Vysokomornaya, G. V. Kuznetsov, and P. A. Strizhak, Heat and mass transfer under local heating and on ignition of a liquid fuel by a focused radiant flux, Izv. Tomsk. Politekh. Univ., 319, No. 4, 29–33 (2010).Google Scholar
  36. 36.
    O. V. Vysokomornaya, G. V. Kuznetsov, and P. A. Strizhak, Modeling of the liquid fuel ignition by a local heating source under the conditions of liquid burning, Khim. Fiz., 30, No. 8, 62–67 (2011).Google Scholar
  37. 37.
    G. V. Kuznetsov, A. V. Zakharevich, and V. I. Maksimov, Ignition of a liquid fire-unsafe substance by a single "hot" metal particle, Izv. Vyssh. Uchebn. Zaved., Fizika, 50, No. 9, 90–95 (2007).Google Scholar
  38. 38.
    V. N. Vilyunov and V. E. Zarko, Ignition of Solids, Elsevier Science Publishers, Amsterdam (1989).Google Scholar
  39. 39.
    D. A. Frank-Kamenetskii, Diffusion and Heat Transfer in Chemical Kinetics [in Russian], Nauka, Moscow (1987).Google Scholar
  40. 40.
    P. J. Roache, Computational Hydrodynamics [Russian translation], Mir, Moscow (1980).Google Scholar
  41. 41.
    V. M. Paskonov, V. I. Polezhaev, and L. A. Chudov, Numerical Simulation of the Heat and Mass Transfer Processes [in Russian], Nauka, Moscow (1984).Google Scholar
  42. 42.
    Yu. V. Polezhaev and F. B. Yurevich, Thermal Shielding [in Russian], Énergiya, Moscow (1976).Google Scholar
  43. 43.
    S. S. Kutateladze, Principles of Heat Transfer Theory [in Russian], Atomizdat, Moscow (1979).Google Scholar
  44. 44.
    A. A. Samarskii, Theory of Difference Schemes [in Russian], Nauka, Moscow (1983).Google Scholar
  45. 45.
    G. V. Kuznetsov and M. A. Sheremet, Conjugate heat transfer in a closed domain with a locally lumped heat-release source, Inzh.-Fiz. Zh., 79, No. 1 56–63 (2006).Google Scholar
  46. 46.
    G. V. Kuznetsov and M. A. Sheremet, Two-dimensional problem of natural convection in a locally heated rectangular region with heat-conducting finite-thickness boundaries, Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza, 41, No. 6, 29–39 (2006).Google Scholar
  47. 47.
    L. A. Kozdoba, Solutions Methods for Nonlinear Heat Conduction Problems [in Russian], Nauka, Moscow (1975).Google Scholar
  48. 48.
    E. S. Shchetinkov, Physics of the Combustion of Gases [in Russian], Nauka, Moscow (1965).Google Scholar
  49. 49.
    A. P. Grekov and V. Ya. Veselov, Physical Chemistry of Hydrazine [in Russian], Naukova Dumka, Kiev (1979).Google Scholar
  50. 50.
    N. V. Korovin, Hydrazine [in Russian], Khimiya, Moscow (1980).Google Scholar
  51. 51.
    A. Ya. Korol’chenko, Processes of Combustion and Explosion [in Russian], Pozhnauka, Moscow (2007).Google Scholar
  52. 52.
    N. B. Vargaftik, Handbook of the Thermal Properties of Gases and Liquids [in Russian], OOO "Stars," Moscow (2006).Google Scholar
  53. 53.
    A. P. Babichev, N. A. Babushkina, and A. M. Bratkovskii, Physical Quantities: Handbook [in Russian], Énergoatomizdat, Moscow (1991).Google Scholar
  54. 54.
    V. N. Yurenev and P. D. Lebedev, Heat Engineering Handbook [in Russian], Vol. 1, Énergiya, Moscow (1975).Google Scholar
  55. 55.
    V. N. Yurenev and P. D. Lebedev, Heat Engineering Handbook [in Russian], Vol. 21, Énergiya, Moscow (1975).Google Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Tomsk National Research Polytechnical UniversityTomskRussia

Personalised recommendations