Prandtl–Mayer flow for a multicomponent mixture

  • V. S. Surov

For the multivelocity model of a heterogeneous medium, which takes into account the properties of a mixture as a whole, the solution of the Prandtl–Mayer self-similar problem is obtained.


multicomponent multivelocity medium hyperbolic systems of partial differential equations self-similar solution 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. S. Surov, The Prandtl−Mayer-type flow for the one-velocity model of disperse medium, Teplofiz. Vysok. Temp., 38, No. 3, 491–495 (2000).Google Scholar
  2. 2.
    V. S. Surov, Certain self-similar problems of flow of a one-velocity heterogeneous medium, Inzh.-Fiz. Zh., 80, No. 6, 164–172 (2007).Google Scholar
  3. 3.
    V. S. Surov, Hyperbolic model of a multivelocity heterogeneous medium, Inzh.-Fiz. Zh., 85, No. 3, 495–502 (2012).Google Scholar
  4. 4.
    M. Baer and J. Nunziato, A two-phase mixture theory for deflagration-to-detonation transition (DDT) in reactive granular materials, Int. J. Multiphase Flow, 12, 861–889 (1986).MATHCrossRefGoogle Scholar
  5. 5.
    M.-H. Lallemand, A. Chinnayya, and O. Le Metayer, Pressure relaxation procedures for multiphase compressible flows, Int. J. Numer. Meth. Fluid, 49, 1–56 (2005).MATHCrossRefGoogle Scholar
  6. 6.
    V. S. Surov, A one-velocity model of a heterogeneous medium with a hyperbolic adiabatic core, Zh. Vych. Mat. Mat. Fiz., 48, No. 6, 1111–1125 (2008).MathSciNetMATHGoogle Scholar
  7. 7.
    G. B. Wallis, One-Dimensional Two-Phase Flow [Russian translation], Mir, Moscow (1972).Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.South Ural State UniversityChelyabinskRussia

Personalised recommendations