Sources of viscous liquid

  • S. K. Betyaev

The classification of the sources of an incompressible liquid has been made and a theory of flows with vortex sources has been suggested. The solutions of the Navier–Stokes equations in the form of linear and point sources of liquid are considered. Spiral sources are investigated. The problem of cutting-off of a linear source has been posed and solved.


vortex, spiral, and point sources of liquid source strength, Trefftz plane 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. M. Miln-Thompson, Theoretical Hydrodynamics [Russian translation], Mir, Moscow (1964).Google Scholar
  2. 2.
    S. K. Betyaev, Prolegomena to Metahydrodynamics [in Russian], Izd. NITs RSD, Moscow–Izhevsk (2006).Google Scholar
  3. 3.
    O. G. Martynenko, V. N. Korovkin, and Yu. A. Sokovishin, The Theory of Laminar Viscous Jets [in Russian], Nauka i Tekhnika, Minsk (1985).Google Scholar
  4. 4.
    M. E. Goldstein, Aeroacoustics [Russian translation], Mashinostroenie, Moscow (1981).Google Scholar
  5. 5.
    S. K. Betyaev, Local theories in hydrodynamics, Tr. TsAGI, Issue 2687, Izd. Dom. TsAGI, Moscow (2010).Google Scholar
  6. 6.
    L. K. Batchelor, An Introduction to Fluid Dynamics [Russian translation], Mir, Moscow (1973).Google Scholar
  7. 7.
    E. von Kamke, Differentialtechungen Lösungsmethode und Lösungen [Russian translation], Gos. Izd. Fiz.-Mat. Lit., Moscow (1961).Google Scholar
  8. 8.
    E. T. Whittaker and G. N. Watson, A Course of Modern Analysis [Russian translation], Éditorial URSS, Moscow (2006).Google Scholar
  9. 9.
    N. A. Slezkin, A case of the integrability of the total differential equations of viscous liquid motion, Uch. Zap. MGU, Issue 2, 89–90 (1934).Google Scholar
  10. 10.
    L. I. Sedov, Similarity and Dimensionality Methods in Mechanics [in Russian], Nauka, Moscow (1977).Google Scholar
  11. 11.
    G. I. Broman and O. V. Rudenko, The Landau submerged jet: exact solutions, their meaning, and applications, Usp. Fiz. Nauk, 180, No. 1, 97–104 (2010).CrossRefGoogle Scholar
  12. 12.
    G. Birkhoff, Hydrodynamics [Russian translation], Izd. Inostr. Lit., Moscow (1954).Google Scholar
  13. 13.
    S. K. Betyaev and A. M. Gaifullin, Spiral Vortices [in Russian], Izd. TsAGI, Moscow (2001).Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.ZhukovskiiRussia

Personalised recommendations