Separation of a Gaseous Mixture in Nanosize Channels. The Role of Surface Diffusion

  • V. M. Zhdanov
  • V. I. Roldugin
  • E. E. Sherysheva

The separation coefficient has been calculated for membranes with nanometer-size pores. In the calculations, account was taken of surface diffusion and of the dependence of the surface-diffusion coefficient on the surface coverage which was determined within the framework of the Langmuir isotherm describing competing adsorption. An analytical solution of the problem has been obtained for mixture flow in single-layer membranes. It has been shown that in the case of a mixture we have the mutual influence of the components on the transfer even in the absence of their formal interaction. In ultrathin channels, there can be a situation where the character of separation of the components is reversed compared to that predicted in the model of free-molecular mixture flow.


membranes nanosize pores mixture flow separation coefficient adsorption surface diffusion mutual influence of the components 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. V. Volkov, B. V. Mchedishvili, V. I. Roldugin, et al., Membranes and nanotechnologies, Ros. Nanotekhnol., 3, Nos. 11−12, 67−99 (2008).Google Scholar
  2. 2.
    A. N. Filippov, V. M. Starov, N. A. Kononenko, and N. P. Berezina, Asymmetry of diffusion permeability of bi-layer membranes, Adv. Colloid Int. Sci., 139, 29–44 (2008).CrossRefGoogle Scholar
  3. 3.
    V. I. Roldughin and V. M. Zhdanov, Asymmetric gas mixture transport in composite membranes, Adv. Colloid Int. Sci., 168, 223–244 (2011).CrossRefGoogle Scholar
  4. 4.
    K. Awasthy, V. Kulshreshtha, D. Tripathi, et al., Transport through track etched polymeric blend membrane, Bull. Mater. Sci., 29, 261–264 (2006).CrossRefGoogle Scholar
  5. 5.
    M. I. Magsumov, M. I. Fedotov, M. V. Tsodikov, et al., Laws governing the progress of reactions of Cl substrates in catalytic nanoreactors, Ros. Nanotekhnol., 1, Nos. 1−2, 142−152 (2006).Google Scholar
  6. 6.
    M. V. Tsodikov, V. V. Teplyakov, M. I. Magsumov, et al., Catalytic membranes modified by catalytic oxide films as ensembles of catalytic nanoreactors, Kinet. Katal., 47, 29−39 (2006).CrossRefGoogle Scholar
  7. 7.
    V. V. Teplyakov, M. V. Tsodikov, M. I. Magsumov, and F. Kapshtein, Asymmetric effects in catalytic membranes, Kinet. Katal., 48, 139−142 (2007).CrossRefGoogle Scholar
  8. 8.
    S. Thomas, R. Shafer, J. Caro, et al., Investigation of mass transfer through inorganic membranes with several layers, Catal. Today, 67, 205–216 (2001).CrossRefGoogle Scholar
  9. 9.
    V. I. Roldughin, V. M. Zhdanov, and E. E. Sherysheva, Effect of surface gas diffusion on the asymmetry of the permeability of bilayer porous membranes, Kolloid. Zh., 74, No. 6, 754−756 (2012).Google Scholar
  10. 10.
    V. M. Zhdanov, V. I. Roldughin, and E. E. Sherysheva, On the gas-separating properties of bilayer porous membranes, Kolloid. Zh., 72, No. 5, 627−634 (2010).Google Scholar
  11. 11.
    J. J. M. Beenakker and S. Yu. Krylov, One-dimensional surface diffusion: Density dependence in smooth potential, J. Chem. Phys., 107, 4015−4023 (1997).CrossRefGoogle Scholar
  12. 12.
    S. De Groot and P. Mazur, Non-equilibrium Thermodynamics [Russian translation], Mir, Moscow (1964).Google Scholar
  13. 13.
    E. A. Mason and A. P. Malinauskas, Gas Transport in Porous Media: the Dusty-Gas Model [Russian translation], Mir, Moscow (1985).Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • V. M. Zhdanov
    • 1
  • V. I. Roldugin
    • 2
  • E. E. Sherysheva
    • 2
  1. 1.National Research Nuclear University “MEPhI,”MoscowRussia
  2. 2.A. N. Frumkin Institute of Physical Chemistry and ElectrochemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations