Advertisement

Journal of Engineering Physics and Thermophysics

, Volume 85, Issue 5, pp 1179–1188 | Cite as

Magnetogasdynamic shock waves in a nonideal gas with heat conduction and radiation heat flux

  • K. K. Singh
  • B. Nath
Article
  • 137 Downloads

The purpose of this study is to obtain a self-similar solution of the problem of propagation of a magnetogasdynamic shock wave in a nonideal gas with heat conduction and radiation heat flux in the presence of a spatially decreasing azimuthal magnetic field strength. The initial density of the medium is assumed to be constant. The heat conduction is expressed in terms of Fourier’s law, and the radiation is considered to be of a diffusion type for an optically thick gray gas model. The thermal conductivity and absorption coefficients are assumed to vary with temperature and density. The shock is assumed to be driven by a piston moving with a variable velocity. Similarity solutions are obtained, and the effects of variation of the gas nonidealness parameter and Alfven–Mach number on the flow field behind the shock are investigated.

Keywords

shock wave magnetogasdynamics nonideal gas self-similar flow heat transfer effects 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. S. Grigoryan, The Cauchy problem and piston problem for one-dimensional unsteady motions of a gas: Selfsimilar motions, Prikl. Mat. Mekh., 22, 179–187 (1958).MathSciNetGoogle Scholar
  2. 2.
    N. N. Kochina and N. S. Melnikova, On unsteady motion of a gas forced out by a piston with counter pressure neglected, Prikl. Mat. Mekh., 22, 444–451 (1958).Google Scholar
  3. 3.
    K. C. Wang, The piston problem with thermal radiation, J. Fluid Mech., 20, 447–455 (1964).MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    J. B. Helliwell, Self-similar piston problem with radiative heat transfer, J. Fluid Mech., 37, 497–512 (1969).MATHCrossRefGoogle Scholar
  5. 5.
    L. I. Sedov, Similarity and Dimensional Methods in Mechanics, Academic Press, New York (1959).MATHGoogle Scholar
  6. 6.
    P. Rosenau and S. Frankenthal, Equatorial propagation of axisymmetric magnetohydrodynamic shocks - I, Phys. Fluids, 19, 1889–1899 (1976).MATHCrossRefGoogle Scholar
  7. 7.
    H. Steiner and T. Hirschler, A self-similar solution of a shock propagation in a dusty gas, Eur. J. Mech. B/Fluids, 21, 371–380 (2002).MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    H. Mirels, Hypersonic flow over slender bodies associated with power law shocks, Adv. Appl. Mech., 7, 1–54 (1962).CrossRefGoogle Scholar
  9. 9.
    W. Gretler and P. Wehle, Propagation of blast waves with exponential heat release and internal heat conduction and thermal radiation, Shock Waves, 3, 95–104 (1993).MATHCrossRefGoogle Scholar
  10. 10.
    A. M. Abdel-Raouf and W. Gretler, Quasi-similar solutions for blast wave with internal heat transfer effects, Fluid Dyn. Res., 8, 273–285 (1991).CrossRefGoogle Scholar
  11. 11.
    A. F. Ghoniem, M. M. Kamel, S. A. Berger, and A. K. Oppenheim, Effects of internal heat transfer on the structure of self-similar blast waves, J. Fluid Mech., 117, 473–491 (1982).MATHCrossRefGoogle Scholar
  12. 12.
    J. P. Vishwakarma and A. K. Singh, Magnetogasdynamic shock waves in a nonuniform gas with heat conduction and radiation heat flux, Int. J. Appl. Mech. Eng., 13, 797–815 ( 2008).Google Scholar
  13. 13.
    S. I. Anisimov and O. M. Spiner, Motion of an almost ideal gas in the presence of a strong point explosion, J. Appl. Math. Mech., 36, 883–887 (1972).CrossRefGoogle Scholar
  14. 14.
    P. H. Roberts and C. C. Wu, Structure and stability of a spherical implosion, Phys. Lett. A., 213, 59–64 (1996).CrossRefGoogle Scholar
  15. 15.
    P. H. Roberts and C. C. Wu, The shock-wave theory of sonoluminescene, in: R. C. Srivastava, D. Leutoff, K. Takayama, and H. Granig (Eds.), Shock Focusing Effect in Medical Science and Sonoluminescence, Springer-Verlag, Berlin (2003), pp. 1–27.Google Scholar
  16. 16.
    Y. B. Zel’dovich and Y. P. Raizer, Physics of Shock Waves and High Temperature Hydrodynamic Phenomena, Vol. II, Academic Press, New York (1967).Google Scholar
  17. 17.
    P. Rosenau and S. Frankenthal, Shock disturbances in a thermally conducting solar wind, Astrophys. J., 208, 633–637 (1976).CrossRefGoogle Scholar
  18. 18.
    P. Rosenau and S. Frankenthal, Propagation of magnetohydrodynamic shocks in a thermally conducting medium, Phys. Fluids, 21, 559–566 (1978).CrossRefGoogle Scholar
  19. 19.
    J. B. Bhowmick, An exact analytical solution in radiation gas dynamics, Astrophys. Space Sci., 74, 481–485 (1981).MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    J. B. Singh and S. K. Srivastava, Propagation of spherical shock waves in an exponential medium with radiation heat flux, Astrophys. Space Sci., 88, 277–282 (1982).MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    L. A. Elliott, Similarity methods in radiation and hydrodynamics, Proc. R. Soc. A, 258, 287–301 (1960).CrossRefGoogle Scholar
  22. 22.
    J. R. Nicastro, Similarity analysis of radiative gasdynamics with spherical symmetry, Phys. Fluids, 13, 2000–2006 (1970).CrossRefGoogle Scholar
  23. 23.
    A. H. Christer and J. B. Helliwell, Cylindrical shock and detonation waves in magnetogasdynamics, J. Fluid Mech., 39, 705–725 (1969).MATHCrossRefGoogle Scholar
  24. 24.
    D. Summers, An idealized model of a magnetohydrodynamic spherical blast wave applied to a flare produced shock in the solar wind, Astron. Astrophys., 45, 151–158 (1975).Google Scholar
  25. 25.
    G. C. Pomraning, The Equations of Radiation Hydrodynamics (Int. Ser. Monographs in Natural Philosophy, 54), Pergaman Press, Oxford (1973).Google Scholar
  26. 26.
    J. P. Vishwakarma, Vinay Chaube, and Arvind Patel, Self-similar solution of a shock propagation in a non-ideal gas, Int. J. Appl. Mech. Eng., 12, 813–830 (2007).Google Scholar
  27. 27.
    P. Rosenau, Equatorial propagation of axisymmetric magnetohydrodynamic shocks - II, Phys. Fluids, 20, 1097–1103 (1977).CrossRefGoogle Scholar
  28. 28.
    D. D. Laumbach and R. F. Probstein, Self-similar strong shocks with radiation in a decreasing exponential atmospheres, Phys. Fluids, 13, 1178–1183 (1970).CrossRefGoogle Scholar
  29. 29.
    J. P. Vishwakarma and A. K. Yadav, Self-similar analytical solutions for blast waves in inhomogeneous atmosphere with frozen-in-magnetic field, Eur. Phys. J. B, 34, 247–253 (2003).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Department of MathematicsNorth-Eastern Hill UniversityShillongIndia

Personalised recommendations